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Introduction

Stabilization is one of the major themes in control theory. Very often, a
primary goal is to ensure stability (or to improve stability properties), since
otherwise the system may just explode.
Let us start with linear systems

ẋ(t) = Ax(t) + Bu(t), u(t) 2 Rm .

Controllability guarantees that one can reach 0 2 Rd (in �nite time) from
each x0 2 Rd by an appropriate control ux0(�).
However, if A has an eigenvalue with positive real part, the solution will
diverge under arbitrarily small perturbations:

ϕ(t, x0 + εx1, ux0) = ε eAtx1| {z }
!∞ generically

+ eAtx0 +
Z t

0
eA(t�s)Bux0(s)ds| {z }
=0

.
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State feedbacks

A remedy is to use feedbacks:

State feedback: Find a matrix F such that with u = Fx

ẋ(t) = Ax(t) + BFx(t) = (A+ BF )x(t).

is (asymptotically) stable.

Some observations:
(i) By coordinate transformation we may assume that

A =
�
A1 A2
0 A3

�
, B =

�
B1
0

�
with (A1,B1) controllable.
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(ii) For scalar control and (A, b) controllable, we may assume

A =

2664
0 1 . . 0
. . . .
. . 1

α0 α1 . . αn�1

3775 and b =

2664
0
.
0
1

3775
with χA(z) = z

n � αn�1zn�1 � ...� α1z � α0.

(iii) This can be stabilized by

f = (β0 � α0, β1 � α1, . . . , βn�1 � αn�1) 2 R1�d ,

since

A+bf = A+

2664
0
.
.
1

3775 (β0� α0, . . . , βn�1� αn�1) =

2664
0 1 . 0
. . . .
. . .

β0 β1 . βn�1

3775 .
with χA(z) = z

n � βn�1z
n�1 � ...� β1z � β0.
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State feedbacks

(iv) (Heymann�s Lemma) Let (A,B) be controllable and b = Bv 6= 0.
Then there is F such that

(A+ BF , b) is controllable.

(ii) - (iv) imply that every controllable pair is stabilizable. Use (i) to get

Theorem. For (A,B) let χ be a normed polynomial χ with
degχ = dim hA jimB i. Then there exists a feedback F s.t.

χA+BF = χ � χA3.

This is known as the pole shifting theorem.

The theorem also shows that stabilizability is equivalent to asymptotic null
controllability.
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Laplace-transforms and poles

For initial condition x(0) = 0, take Laplace transforms

û(s) =
Z ∞

0
e�stu(t)dt, x̂(s) =

Z ∞

0
e�stx(t)dt.

By partial integration

ẋ^(s) =
Z ∞

0
e�st ẋ(t)dt = s

Z ∞

0
e�stx(t)dt = sx̂(s).

Thus ẋ^(s) = Ax̂(s) + Bû(s) implies

x̂(s) = (sI � A)�1Bû(s).

The eigenvalues of A are the poles of (sI � A)�1B.
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Stabilization via outputs

Consider ẋ = Ax + Bu, y = Cx .
Static output feedback: With u = Fy = FCx

ẋ(t) = Ax(t) + BFCx = (A+ BFC )x(t).

Example: ẋ1 = x2, ẋ2 = u , y = x1.
This system is controllable and observable, but there is no (asymptotically)
stabilizing feedback k : R ! R with

ẋ1 = x2, ẋ2 = k(y) = k(x1).

In fact,

V (x1, x2) = (x2)
2 � 2

Z x1

0
k(s)ds

is constant along trajectories, V (0, 0) = 0 and V (0, α) = α2 for α 6= 0.
Thus static output feedback is not good enough !
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Dynamic observers

Instead of this static output feedback use dynamic output feedback.

Separate the output stabilization problem into two subproblems:

(i) �nd a stabilizing state feedback;

(ii) estimate the state by a dynamical system, an observer, and use this
estimate in (i).
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A dynamic observer

ad (ii) For ẋ = Ax + Bu, y = Cx �nd L such that A+ LC is stable.

Then, by linearity, the dynamic observer

ż = (A+ LC )z � Ly + Bu

satis�es
kz(t)� x(t)k ! 0 for t ! ∞.

In fact: the error e(t) = z(t)� x(t) converges to 0, since

ė = ż � ẋ = (A+ LC )z � Ly + Bu � Ax � Bu
= (A+ LC )z � LCx � Ax
= (A+ LC )(z � x)
= (A+ LC )e.
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Compensator

Theorem. If (A,B) and (A>,C>) are stabilizable (i.e., asymptotic null
controllability and asymptotic observability hold), then there are F and L
such that following the dynamic output feedback stabilizes the system,

u = Fz ,

where
ż = (A+ LC )z + BFz � LCx .
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Compensator: comments on the proof

We use the estimate z(t) instead of the state x(t) in the state feedback
and assume that (A,B) and (A>,C>) are stabilizable.

Then the system is stabilized by u = Fz , since the following coupled
system is stable,

ẋ = Ax + BFz

ż = (A+ LC )z + BFz � LCx .

In fact, one can prove stability for the corresponding system matrix�
A BF
�LC A+ LC + BF

�
.

Fritz Colonius (Universität Augsburg) Stabilization January 20, 2019 12 / 27



Linear-quadratic optimal control

This is an e¢ cient (and intensely studied) method to construct stabilizing
feedbacks. Consider

ẋ(t) = Ax(t) + Bu(t)

z(t) = Cx(t) +Du(t).

Here z(t) is the output which is to be controlled. This can be done by
minimizing for given initial state x0 over u

J(x0; u) =
Z ∞

0

h
kCx(t)k2 + kDu(t)k2

i
dt.

More generally, minimize with Q � 0 and N > 0,

J(x0; u) =
Z ∞

0

h
x(t)>Qx(t) + u(t)>Nu(t)

i
dt.

For Q > 0, x(t)! 0 for t ! ∞ if there is u with J(x0; u) < ∞.
Goal: Show that the optimal controls can be written as feedback u = Fx .
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This problem is closely related to positive semide�nite solutions of the
algebraic matrix Riccati equation

A>P + PA� PBB>P +Q = 0. (ARE)

A typical result:
Theorem. Assume that (A,B) is stabilizable and spec(A) \ ıR = ?.
(i) There is a smallest positive semide�nit solution P� of ARE.
(ii) For every input u

J(x0; u) = x>0 P
�x0 +

Z ∞

0




u(t) + B>P�x(t)


2 dt.
(iii) The optimal input is given by the feedback

u(t) = �B>P�x(t).

The proof uses the �nite time problem and completion of squares.
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An example

Stabilize an inverted pendulum on a �ying quadrocopter.

The complete system is described by a 16-dimensional system of
di¤erential equations (12 for the quadrocopter + 4 for the pendulum) with
4 control inputs.
After simpli�cation to 13 dimensions and linearization in the equilibrium a
linear-quadratic optimal control problem is solved.
Critical is the measurement of the states which is done by an infrared
motion tracking system.

Hehn and D�Andrea, IEEE Trans. Aut. Control (2011)
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Further problems

The H∞-problem for

ẋ = Ax + Bu + Ed

z = Cx +Du

Goal: Given γ > 0 �nd F such that A+ BF is stable and (for x0 = 0)

kzk2 � γ kdk2 for all perturbations d 2 L2(0,∞,R`).

This is possible for γ > kGF k with

GF : L2(0,∞)! L2(0,∞), d(�) 7! z(�) =
Z �

0
Ce(A+BF )(t�τ)Ed(τ) dτ.

(well de�ned for A+ BF stable)
This again leads to LQ-optimal control (without positive de�niteness).

Fritz Colonius (Universität Augsburg) Stabilization January 20, 2019 16 / 27



Note that for stable A and

G : L2(0,∞)! L2(0,∞), d(�) 7! z(�) =
Z �

0
CeA(t�τ)Ed(τ) dτ

and
G̃ (s) = C (sI � A)�1E

one has

kGk = sup
�kG (d)k2

kdk2

��0 6= d 2 L2� = sup
ω2R



G̃ (iω)

 ,
where kG (iω)k denotes the largest singular value.
This is the H∞-norm of matrix-valued functions which are holomorphic on
the open right half plane.
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Nonlinear stabilization at an equilibrium

Consider
ẋ(t) = f (x(t), u(t))

and let x� be an equilibrium f (x�, u�) = 0. Linearization in (x�, u�) yields

ẏ(t) = fx (x�, u�)y(t) + fu(x�, u�)v(t)

and write A = fx (x�, u�) and B = fu(x�, u�).
Then a stabilizing feedback F for the linearized system is locally stabilizing
for the nonlinear system

ẋ(t) = f (x(t),F (x(t)� x�)).

(use a Lyapunov function)
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Brockett�s necessary condition

Theorem. Consider ẋ = f (x , u), u 2 U open. If there is a locally
stabilizing continuous feedback F : Rd ! U, then f (Rd ,U) is a
neighborhood of 0.

Example (Brockett�s nonholonomic integrator)

ẋ1 = u1
ẋ2 = u2
ẋ3 = x1u2 � x2u1

This is a simple model for a vehicle with angle θ = x1 in forward direction
and position

(z1, z2) = (x2 cos θ + x3 sin θ, x2 sin θ � x3 cos θ).

No point (0, 0, ε) with ε 6= 0 is in the image of f .
On the other hand, the system is asymptotically null controllable.
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Control-Lyapunov functions

Asymptotic controllability to an equilibrium and stabilization can be dealt
with using control-Lyapunov functions V (x , u) which decrease along
trajectories for appropriate controls.

Roughly,
- asymptotic controllability to an equilibrium holds if there exists a
continuous control-Lyapunov function
- stabilizability with continuous feedback holds if there exists a smooth
control-Lyapunov function.

cf. Sontag (1998), Coron (2007).
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Coron�s return method: time-varying feedbacks

Theorem. Consider a driftless control system in Rd

ẋ =
m

∑
i=1
ui (t)fi (x)

and assume that

fg(x) jg 2 LA(f1, . . . , fm)g = Rd for all x 6= 0.

Then for every T > 0 there exists u 2 C∞(Rd �R) with

u(0, t) = 0, u(x , t + T ) = u(x , t) for all t 2 R, x 2 Rd ,

such that 0 is globally asymptotically stable for

ẋ =
m

∑
i=1
ui (x , t)fi (x).

The proof constructs periodic trajectories near 0 with controllable
linearization. Coron (1992), (2007).
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Example

Nonholonomic integrator

ẋ1 = u1, ẋ2 = u2, ẋ3 = x1u2 � x2u1.

Here

f1(x) =

24 1
0
�x2

35 , f2(x) =
24 0
1
x1

35 .
Brockett�s necessary condition is violated, but the Lie algebra rank
condition is satis�ed. Hence it can be globally asymptotically stabilized by
means of periodic time-varying feedback.
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Stabilization with piecewise constant controls

Continuous stirred tank reactor�
ẋ1
ẋ2

�
=

�
�x1 � a(x1 � xc ) + Bα(1� x2)ex1

�x2 + α(1� x2)ex1
�
+ u(t)

�
xc � x1
0

�
,

where x1 is the temperature and x2 is the product concentration, xc is the
coolant temperature and the control a¤ects the heat transfer coe¢ cient
with parameters

a = 0.95, α = 0.05, B = 10.0, xc = 1.0

and control range
Ω = [�0.15, 0.15].

The uncontrolled system has an unstable (hyperbolic) �xed point at

(x�1 , x
�
2 ) � (2.8, 0.45) 2 D
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Stabilization by piecewise constant feedbacks

Let D be the control set around the equilibrium with control range
Ω = [�ρ, ρ]. De�ne

R0 : = fx jϕ(t, x , ρ) 2 D for some t > 0g,
R1 : = fx jϕ(t, x ,�ρ) 2 R0 [D for some t > 0g n R0
R2 : = fx jϕ(t, x , ρ) 2 R0 [ R1 [D for some t > 0g n (R0 [ R1)

etc.
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Final remarks

Since asymptotic stabilization is a basic problem in control, there is a
multitude of algorithms to achieve it, in addition to the concepts presented
above.

- Backstepping
- Model-predictive control (receding horizon optimal control)
- ...

Note also, that in applications stability is only one goal among others
including, in particular, robustness properties with respect to perturbations
and overshoot.
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