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Introduction

We will associate to control-a¢ ne systems a continuous dynamical system
which allows us to use methods from the theory of dynamical systems on
metric spaces in order to obtain results on controllability properties.

Furthermore, it is shown how control sets are related to properties of
certain random dynamical systems: The supports of the invariant measures
for Piecewise Deterministic Markov Processes (PDMP) are characterized
by the invariant control sets.
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Discrete-time systems

Consider

xk+1 = f (xk , uk ), uk 2 Ω, for k 2 N = f0, 1, ...g,

where f : M �Ω ! M is continuous on metric spaces M and Ω.
A control function u is an element of ΩN (or ΩZ), the solutions are
ϕ(k, x , u).
The shift θ : ΩN ! ΩN is θ((uk )k�0) = (uk+1)k�0.
De�ne the control �ow by

Φ : ΩN �M ! M,Φ(u, x) = (θu, f (x , u0)),

with
Φk (u, x) = (θku, ϕ(k, x , u)).

Then ϕ is a cocycle, i.e.,

ϕ(k + `, x , u) = ϕ(k, ϕ(`, x , u), θ`u) for k, ` 2 N
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Discrete-time systems

Proposition. The shift θ and the map Φ de�ne continuous dynamical
systems. If Ω is compact, also ΩN is compact.

Proof. Compactness of ΩN holds by Tychonov. Continuity of θ follows
since the sets

W = W0 �W1 � � � � �WN �Ω� � � � � ΩN

with Wi � U open form a subbasis of the product topology and the
preimages

θ�1W = Ω�W0 �W1 � � � � �WN �Ω� � � �

are open. Φ is continuous by continuity of θ and f .
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Continuous-time systems

Consider control-a¢ ne systems

ẋ(t) = f0(x(t)) +
m
∑
i=1
ui (t)fi (x(t)),

u 2 U = fu 2 L∞(R,R
m) j u(t) 2 Ω � Rm g

with trajectories ϕ(t, x , u), t 2 R. A special case are bilinear systems

ẋ(t) = A0x(t) +
m
∑
i=1
ui (t)Aix(t) with Ai 2 Rd�d .

De�ne the shift on U by (θtu) (s) = u(t + s), s 2 R. Then

Φ : R�U�Rd ! U�Rd , (t, u, x)! Φt (u, x) = (θtu, ϕ(t, x , u))

is a skew product �ow,

ϕ(t + s, x , u) = ϕ(t, ϕ(s, x , u), θsu) for t, s 2 R,

hence

Φ(t + s, x , u) = (θt+su, ϕ(t + s, x , u)) = Φt �Φs (u, x).
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The shift

Proposition. Assume that Ω � Rm is convex and compact.
(i) Then U = fu 2 L∞(R,Rm) j u(t) 2 Ω � Rm g is weak� compact and
metrizable in L∞ =

�
L1
��.

(ii) The shift θ is continuous, the periodic points are dense.

Proof. (i) U is a convex, bounded closed subset of L∞, hence by Alaoglu�s
Theorem compact and metrizable. The periodic functions are dense: Let
u 2 U and ε > 0.

8x 2 L1 9T > 0 :
Z

Rn[�T ,T ]
kx(t)k dt < ε/diamΩ.

De�ne up(t) = u(t) on [�T ,T ] and extend periodically. Then����Z
R
[u(t)� up(t)]>x(t)dt

���� � diamΩ
Z

Rn[�T ,T ]
kx(t)k dt.

(ii) Continuity of the shift in the L1-topology on U can be shown, since
the shift on L1 is continuous.
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Shadowing

Remark. Da Silva and Kawan DCDS (2016) have shown that the shift on
U satis�es the following shadowing property:
For every ε > 0 there is δ > 0 such that for every sequence (uk )k2Z in U
with d(θ1uk , uk+1) � δ there is u 2 U with

d(θku, u
k+1) � ε.

If the chain (uk )k2Z is periodic, u can be chosen as a periodic function.
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The Control Flow

Theorem. For a control a¢ ne system with compact and convex control
range Ω, the control �ow

Φ : R�U�Rd ! U�Rd , (t, u, x)! Φt (u, x) = (θtu, ϕ(t, x , u))

is continuous.

Proof for bilinear control systems ẋ = A0x +∑m
i=1 ui (t)Aix :

Let tn ! t0, un ! u0 and xn ! x0 and abbreviate ϕn(t) = ϕ(tn, xn, un).
Using Arzela-Ascoli, let ϕn(�)! ψ(�). Then on [0, t0 + 1]

ϕn(t) = xn+
Z t

0
A0ϕn(s)+

m

∑
i=1
uni (s)Ai [ϕ

n(s)� ψ(s)]+
m

∑
i=1
uni (s)Aiψ(s)ds

and by weak� convergence
R t
0 ∑
i
uni (s)Aiψ(s)ds !

R t
0 ∑
i
u0i (s)Aiψ(s)ds.

Hence by Gronwall ψ = ϕ0.
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Relations to controllability

De�nition. A �ow Φ on a compact metric space X is topologically
mixing if for all open V ,W � X there is T > 0 with

Φ(T ,V ) \W 6= ?.

It is topologically transitive if there is x 2 X with

X = ω(x) := fy = limtk!∞ Φ(tk , x) for some tk ! ∞g.

Recall: A control set D is a maximal set such that for all x 2 D there is
u 2 U with ϕ(t, x , u) 2 D, t � 0, and

D � R(x) for all x 2 D.

A point x is locally accessible if for all T > 0

intR�T (x) 6= ? and intC�T (x) 6= ?.
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Relations to controllability

The lift of a control set D with nonvoid interior is

cl f(u, x) 2 U �M jϕ(t, x , u) 2 intD for all t 2 Rg .

Theorem. Assume local accessibility.
(i) The lift of a control set D with nonvoid interior is a maximal
topologically mixing set for the control �ow.
(ii) Conversely, every maximal topologically mixing set whose projection to
M has nonvoid interior is the lift of a control set.

Proof. (i) Needs a subbasis of the topology on U .
(ii). Use local accessibility!
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Chain transitivity

Let Φ be a continuous �ow on a compact metric space X .
For ε,T > 0 an (ε,T )-chain ζ from x 2 X to y 2 X is given by

n 2 N, x0 = x , x1, . . . , xn = y ,T0,T1, . . . ,Tn�1 > T

such that
d(Φ(Ti , xi ), xi+1) < ε for all i .

A set K � X is chain transitive if for all x , y 2 K and all ε,T > 0 there
is an (ε,T )-chain from x to y .
A maximal chain transitive set is called chain recurrent component.

Example. A homolinic orbit together with the equilibrium.

Remark. Conley�s Fundamental Theorem implies that the control �ow
Φ is gradient-like outside the maximal chain transitive sets Ei .
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We return to control systems.

De�nition. A chain control set E � M is a maximal set with
(i) for all x 2 E there is u 2 U with ϕ(t, x , u) 2 E for all t 2 R;
(ii) for all x , y 2 E and all ε,T > 0 there is a controlled (ε,T )-chain from
x to y given by

n 2 N, x0 = x , x1, . . . , xn = y , u0, . . . , un�1 2 U ,T0, . . . ,Tn�1 > T

with
d(ϕ(Ti , xi , ui ), xi+1) < ε for all i .
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Chain control sets

We return to control-a¢ ne systems

ẋ(t) = f0(x(t))+
m
∑
i=1
ui (t)fi (x(t)), u 2 U = fu 2 L∞(R,R

m) ju(t) 2 Ωg

with control �ow

Φ : R�U �M ! U �M, (t, u, x)! (θtu, ϕ(t, x , u)).

Theorem. For every compact chain control set E the lift

E := f(u, x) 2 U �M jϕ(t, x , u) 2 E , t 2 Rg

is a chain recurrent component for the control �ow Φ and conversely.

For the proof observe that the projection of a chain transitive set for Φ to
M yields controlled (ε,T )-chains. For the converse one has to construct
(ε,T )-chains in U �M from controlled (ε,T )-chains.
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Alternative characterization

A Morse decomposition of a �ow is given by fMi ji = 1, . . . , `g with
nonvoid, pairwise disjoint and compact isolated invariant sets s.t.
(i) 8x 2 X : ω(x), α(x) � S`

i=1Mi ;
(ii) there are no cycles.

Example
ẋ = x(x � 1)(x � 2)2(x � 3).

Morse decompositions are e.g.

M1 = f0g � M2 = [1, 3]

M1 = f0g � M3 = f1g � M2 = [2, 3]

M1 = f0g [ [2, 3] �M2 = f1g.

with �nest Morse decomposition

f0g � f1g � f2g � f3g.
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Morse decompositions and chain transitivity

Theorem. If for a �ow on a compact metric space the number of chain
recurrent components is �nite, this corresponds to the �nest Morse
decomposition.

For control systems, this implies:

If the number of chain control sets in a compact invariant set is �nite, this
corresponds to the �nest Morse decomposition of the control �ow.
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Parameter dependence

Under appropriate compactness assumptions, chain control sets depend
upper semicontinuously on parameters, and control sets depend lower
semicontinuously on parameters (in the Hausdor¤ metric).

Theorem. Fix α0 and suppose that Dα0 is a control set such that
clDα0 = E α0 is a chain control set. Then there are control sets Dα and
chain control sets E α with

limα!α0 clDα = clDα0 = E α0 = limα!α0 E
α.

Thus we see that abrupt changes in the behavior can be expected only if
control sets and chain control sets are di¤erent.
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Chain control sets versus control sets I

Next we turn to conditions which ensure that a chain control set is the
closure of a control set.
Theorem. Consider di¤erent control ranges Uρ = ρ � U with ρ � 0, and
assume the following ρ-inner-pair condition:
For all x , all ρ0 > ρ � 0 and all u 2 U ρ there is T > 0 with

ϕ(T , x , u) 2 intRρ0(x).

Then for all but at most countably many ρ-values and all control sets

clDρ = E ρ.

Gayer (2003): The ρ-inner pair condition holds for all systems

ẍ + g(t, x , ẋ) = h(t, x , ẋ)u(t)

with g and h T -periodic in t and h(t, x , ẋ) > 0.
For the proof one plans a trajectory and solves for the control u.
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Chain control sets versus control sets II

An alternative are hyperbolicity conditions for the control �ow which imply
the shadowing property.

FC/Du (2003), da Silva and Kawan (2016).
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Piecewise Deterministic Markov Processes

Let E = f0, 1, ...,mg and for any i 2 E let F i : Rd ! Rd be a smooth
(C∞) vector �eld with corresponding �ow Φi

t (x), t � 0.

A Piecewise Deterministic Markov Process (PDMP) has the form
Zt = (Xt ,Yt ) living on Rd � E where the continuous component Xt
evolves according to a �ow Φi

t ; the component on E determines which of
the �ows Φi

t is active with random switching times.

Davis (1993)
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Piecewise Deterministic Markov Processes

Choice of the �ow Φi , i 2 E = f0, 1, ...,mg on M � Rd : Let

x 7! Q(x) = (Q(x))i ,j : Rd ! R(m+1)�(m+1)

be continuous with Q(x) irreducible and aperiodic for all x .

Random switching times Tn: Determined by a homogeneous Poisson
process (Nt )t�0 with intensity λ, and Un = Tn � Tn�1.
The discrete-time process: Let Z̃n =

�
X̃n, Ỹn

�
on M � E be recursively

de�ned by
X̃n+1 = ΦỸn (Un+1, X̃n)

P
�
Ỹn+1 = j

��X̃n+1, Ỹn = i � = Q(X̃n+1)i ,j .
The continuous-time process (by interpolation):

Zt =
�

ΦỸn (t � Tn, X̃n), Ỹn
�
for t 2 [Tn,Tn+1].
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The associated deterministic control system

Recall that the �ows Φi are given by the vector �elds F i .

ẋ =
m

∑
i=0
vi (t)F i (x), t � 0.

with

v(t) = (vi (t)) 2
(
v 2 Rm+1

����� m∑i=0 vi = 1, vi 2 f0, 1g
)
.

Up to closure, the trajectories of this system coincide with those of the
control-a¢ ne system

ẋ = F 0(x) +
m

∑
i=1
ui (t)[F i (x)� F 0(x)]

with controls taking values in

Ω =

(
u 2 Rm

����� m∑i=1 ui � 1, ui 2 [0, 1]
)
.
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A Decisive Lemma for PDMP

Lemma
For all T > 0, x 2 M, i 2 E , δ > 0 and every trajectory ϕ(�, x , u) of the
control system one �nds for start in x and i 2 E that there is ε > 0 such
that

Px ,i

"
sup

t2[0,T ]
kXt � ϕ(t, x , u)k � δ

#
� ε.

Benaïm, Le Borgne, Malrieu and Zitt (2015)

In the terminology of Arnold and Kliemann (1983) this is a tube lemma
connecting the stochastic system and the control system.

Fritz Colonius (Universität Augsburg) Control Flows and Control Sets January 20, 2019 25 / 44



A consequence of the tube lemma

Corollary
Let C be an invariant control set with nonvoid interior and let x 2 M with
R(x) \ C 6= ?.
Then there are T > 0 and ε > 0 with

Px ,i [XT 2 intC ] � ε for all i 2 E .

This follows since then x can be steered into the interior of C in �nite time.
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Characterization of the supports of invariant measures for
Piecewise Deterministic Markov Processes (PDMP)

Theorem
Assume that the control system is locally accessible on a compact
positively invariant set M.

(i) Then for every ergodic measure µ of the process (Zt ) there is a
compact invariant control set C with suppµ = C � E .
(ii) Conversely, let C be a compact invariant control set. Then there exists
an ergodic measure µ with support equal to C � E and every invariant
measure with support contained in C � E has support equal to C � E .

This is also true for the discrete-time process (Z̃n).
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Convergence Rate for PDMP

Theorem
Assume that for some x in a compact invariant control set C the Lie
algebra LA(F 0, . . . ,Fm) has full rank at x .

Then there is a unique invariant measure µ with suppµ = C � E (hence
µ is ergodic) and there are c > 0 and 0 < ρ < 1 such that for all
(x , i) 2 C � E and A � C

jPx ,i [Z̃n 2 A]� µ(A)j � cρn, n 2 N.
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An Example: Lotka-Volterra model with hunting and
resting

The model:
ẋ = αx

�
1� 1

K

�
x � βxy

ẏ = �βxy + γ(L� y)

1
β corresponds to the hunting time of the predator y ,
1
γ corresponds to the resting time of the predator y ,

normalized via 1
β +

1
γ = 1.

Coexistence and extinction as hunting (and resting) time undergoes
random �uctuations.

Horsthemke, Lefever (84), FC, de la Rubia, Kliemann (96)
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The Lotka-Volterra model as a PDMP

The model:
ẋ = αx

�
1� 1

K

�
x � βxy

ẏ = �βxy + γ(β)(L� y)

with the normalization 1β +
1

γ(β)
= 1. For

K = 0.5, L = 1.0, α = 4.0, β > 4.0

the rectangle [0,K ]� [0, L] is invariant and the �xed points are
(0, L)(stable), an unstable and a stable �xed point.

Let β switch randomly between β = 4.1 and β = 4.2. Thus E = f0, 1g,

F 0
�
x
y

�
=

�
αx
�
1� 1

K

�
x � 4.1xy

�4.1xy + γ(4.1)(L� y)

�
,

F 1
�
x
y

�
=

�
αx
�
1� 1

K

�
x � 4.2xy

�4.2xy + γ(4.2)(L� y)

�
Two invariant measures with supports given by f(0, L)g and C .
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Other (more realistic) Lotka-Volterra systems with random switching have
been analyzed in detail by

Benaïm and Lobry, Lotka-Volterra with randomly �uctuating environments
or �How switching between bene�cial environments can make survival
harder�,
Annals of Applied Probability (2016).

A survey is:
Probabilistic and Piecewise Deterministic models in Biology,
Cloez, Dessalles, Genadot, Malrieu, Marguet, Yvinec
ESAIM (2017)
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PDMP for a particle in a double well potential

Consider

ẍ + γx +
dV
dx
(x) = 0

with
V (x) =

1
2
x4 +

2
3
x3 � 2x2 � ρx
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PDMP for a particle in a double well potential
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V (x) with ρ = 0
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PDMP with a double well potential

ẋ = y

ẏ = �γ y � x(2x2 + 2 x � 4)� ρ

with γ = 0.1 and random switching between �ρ. Here E = f0, 1g and

F 0
�
x
y

�
=

�
y

�γ y � x (2x2 + 2 x � 4) + ρ

�
,

F 1
�
x
y

�
=

�
y

�γ y � x (2x2 + 2 x � 4)� ρ

�
.

The associated control system is

�
ẋ
ẏ

�
=

�
y

�γ y � x (2x2 + 2 x � 4)

�
+

�
0
u(t)

�
, u(t) 2 [�ρ, ρ].
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PDMP with a double well potential

For ρ = 0.05 there are two invariant control sets C 0.051 and C 0.052 that
contain the stable �xed points (1, 0) and (�2, 0), respectively, of the
uncontrolled equation and one non-invariant control set D0.05 containing
the hyperbolic �xed point (0, 0) of the uncontrolled equation.

Increasing the control range, one �nds that the control sets C ρ0
1 and Dρ0

merge for some ρ0 close to 0.085 and form one variant control set.

This determines the number of invariant measures for the PDMP and their
supports.
Computations: Tobias Gayer with GAIO
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Bifurcations: PDMP with a double well potential
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Fritz Colonius (Universität Augsburg) Control Flows and Control Sets January 20, 2019 37 / 44



PDMP with a double well potential
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PDMP with a double well potential
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Bifurcations: PDMP with a double well potential

Support of a single invariant measure (in red)
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Bifurcations: PDMP with a double well potential

Support of a single invariant measure (in red)
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Bifurcations: PDMP with a double well potential

Support of a single invariant measure (in red)
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Final Remarks

The concept of control �ow allows us to consider the theory of (open
loop) control systems as a chapter in the theory of dynamical systems.
The control term can also be interpreted as a deterministic perturbation.
As a random perturbation, one obtains that for Piecewise Deterministic
Markov Processes (with continuous trajectories) the supports of the
invariant measures can be characterized by controllability properties.
Similar (older) results hold for degenerate Markov di¤usions.

In general, PDMP may also allow random jumps. Although control
systems allowing discontinuous trajectories have been analyzed in the
literature, their controllability properties are apparently unknown.

Fritz Colonius (Universität Augsburg) Control Flows and Control Sets January 20, 2019 43 / 44



Some references

M. Benaim, F. Colonius, R. Lettau, Supports of invariant measures for
piecewise deterministic Markov processes, Nonlinearity 30 (2017),
3400-3418.

M. Benaïm and C. Lobry, Lotka-Volterra with randomly �uctuating
environments or �How switching between bene�cial environments can
make survival harder�, Annals of Applied Probability (2016).

F. Colonius, W. Kliemann, The Dynamics of Control, Birkhäuser 2000.

Cloez, Dessalles, Genadot, Malrieu, Marguet, Yvinec, Probabilistic and
piecewise deterministic models in biology, ESAIM (2017)

Fritz Colonius (Universität Augsburg) Control Flows and Control Sets January 20, 2019 44 / 44


	4_ControlFlow_2019_01_28.pdf
	4_ControlFlow_2019_01_20
	4_ControlFlow_2019_01_20.pdf
	4_p22_Hunting
	4_ControlFlow_2019_01_20


