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Introduction

A bilinear control systems has the form

ẋ(t) = A0x(t) +
m

∑
i=1
ui (t)Aix(t) = A(u)x , u(t) = (ui (t))i=1,...,m 2 Ω,

with d � d-matrices A0,A1, . . . ,Am 2 Rd�d and compact convex control
range Ω � Rm .
We will consider the associated control �ow and controllability properties
as well as exponential stability properties.
Crucial insight will be gained by analyzing the projection to (real)
projective space Pd�1.

Di¤erent approaches to bilinear control systems can be found e.g. in
D.L. Elliott, Bilinear Control Systems, 2009
San Martin/Seco, Erg.Th.Dyn.Syst.(2010) based on semigroups in Lie
groups.
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The linear oscillator

The linear oscillator with control/uncertainty in the restoring force:

ẍ + bẋ + [1+ u(t)]x = 0, with u(t) 2 [�ρ, ρ], b = 1.5 > 0.

or, in state space form,�
ẋ1
ẋ2

�
=

�
0 1
�1 �2b

� �
x1
x2

�
+ u(t)

�
0 0
�1 0

� �
x1
x2

�
with u(t) 2 [�ρ, ρ] and b > 0.
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The linear control �ow

As in the general case, a bilinear control system de�nes a control �ow on
U �Rd , given by

Φ(t, u, x) = (θtu, ϕ(t, x , u)), t 2 R.

The special property of this control �ow is its linearity with respect to x ,

Φ(t, u, αx + βy) = αΦ(t, u, x) + βΦ(t, u, y), α, β 2 R.

The state space U �Rd has the structure of a (topologically trivial)
vector bundle with compact metric base space U .
Furthermore, we know that the periodic points are dense for the shift θ,
hence the base space is chain transitive.
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Projective space

Linearity of Φ(t, u, x) in x immediately implies that one gets an induced
�ow on U �Pd�1.
Pd�1 may be obtained by identifying opposite points on the unit sphere.
For a solution x(t) = ϕ(t, x0, u) of ẋ = A(u)x one obtains with
s(t) = x (t)

kx (t)k , where kx(t)k =
p
hx(t), x(t)i,

ṡ(t) =
h
A(u)� s(t)TA(u)s(t) � I

i
s(t).

In fact,

ṡ =
ẋ kxk � x hẋ , xi / kxk

kxk2
=
A(u)x kxk � x hA(u)x , xi / kxk

kxk2

=
h
A(u)� s(t)TA(u)s(t) � I

i
s(t).

Abbreviating h(s, u) =
�
A(u)� sTA(u)s � I

�
s we can write this as

ṡ(t) = h(s(t), u(t)) on Sd�1.

The subtracted term
�
sTA(u)s

�
s is the radial component of A(u)s.
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Exponential growth rates

The exponential growth rate or Lyapunov exponent of a solution for
(u, x0) is

λ(u, x0) = lim sup
t!∞

1
t
log kϕ(t, x0, u)k .

Somewhat surprisingly, also the Lyapunov exponents are determined by the
induced system on projective space,

λ(u, x0) = lim sup
t!∞

1
t

Z t

0
q(u(τ), s(τ))dτ with q(u, s) := s>A(u)s.
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Selgrade�s Theorem

Theorem. Let Φ be a continuous linear �ow on on a vector bundle
U �Rd with compact chain transitive base space Rd . Then the induced
�ow PΦ on U �Pd�1 has only �nitely many chain recurrent components
M1, . . . ,M`, 1 � ` � d . They have the following form:
EveryMi de�nes an invariant subbundle via

Vi := P�1(Mi ) = f(u, x) 2 U �Rd j(u,Px) 2 Mi g

and the following decomposition into a Whitney sum holds

U �Rd = V1 � � � � � V`.
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A simple example

Consider the linear autonomous ordinary di¤erential equation

ẋ = Ax .

For an eigenvector x corresponding to a real eigenvalue µ of A the point
Px is an equilibrium in Pd�1.

More generally, let λ1, . . . ,λ` be the pairwise di¤erent real parts of the
eigenvalues of A and denote by V (λi ) be the direct sum of all generalized
eigenspaces for the eigenvalues with real part equal to λi . Then the
Mi := PVi are the chain recurrent components and

Rd =
M̀
i=1

V (λi ) =
M̀
i=1

P�1Mi .
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The chain control sets

Corollary. For a bilinear control system ẋ = A(u)x , u(t) 2 Ω, there are
1 � ` � d chain control sets Ei for the induced system in projective space
and there is a Whitney decomposition

U �Rd =
M̀
i=1

P�1Ei ,

where the Ei are the lifts of the chain control sets Ei in Pd�1,

Ei = f(u, p) 2 U �Pd�1 js(t, p, u) 2 Ei for t 2 Rg,

with s(t, p, u) denoting the solution of

ṡ(t) =
h
A� s(t)TAs(t) � I

i
s(t), s(0) = p.
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Questions:

- Proof of Selgrade�s theorem

- How are the Lyapunov exponents related to the chain control sets?

- Do the chain control sets coincide with the control sets in projective
space?

- What about the control sets in Rd ?

- Consequences for stability and stabilizability
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On the proof of Selgrade�s theorem

This is based on the relation between chain recurrence, Morse
decompositions and attractor-repeller pairs.

Recall:
A Morse decomposition of a �ow is given by fMi ji = 1, . . . , `g with
nonvoid, pairwise disjoint and compact isolated invariant sets s.t.
(i) 8x 2 X : ω(x), α(x) � S`

i=1Mi ;
(ii) there are no cycles.

If the number of chain recurrent components is �nite, this corresponds to
the �nest Morse decomposition. In particular, if the number of chain
control sets in a compact invariant set is �nite, this corresponds to the
�nest Morse decomposition of the control �ow.
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Relations to attractors

De�nition. For a �ow on a compact metric space X an attractor A is a
compact invariant set with a nbhd N such that

A = ω(N) := fy 2 X j9(xn) 2 N, 9tn ! ∞ : y = lim xn � tn g.

A compact invariant set R is a repeller if it has a nbhd N� such that

R = α(N�) := fy 2 X j9(xn) 2 N�, 9tn ! �∞ : y = lim xn � tn)g.

Proposition. For every attractor A

A� := fx 2 X jω(x) \ A = ?g

is a repeller, called the complementary repeller.
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Morse decompositions and attractor-repeller pairs

Theorem. LetMi , i = 1, . . . , n, be subsets of X . Equivalent are:

(i) fMi ji = 1, . . . , g form a Morse decomposition;

(ii) there is an increasing sequence of attractors

? = A0 � A1 � � � � � An = X

such thatMn�i = Ai+1 \ A�i for 0 � i � n� 1.

Example.
ẋ = x(x � 1)(x � 2)2(x � 3).

A Morse decomposition is given by

M1 = f0g � M3 = f1g � M2 = [2, 3].

Here n = 3,A0 = ?,A�0 = [0, 3],A1 = f1g,A�1 = f0g [ [2, 3],
A2 = [1, 3],A�2 = f0g,A3 = [0, 3],A�3 = ? and

A1 \ A�0 = f1g =M3,A2 \ A�1 = [2, 3] =M2,A3 \ A�2 = f0g =M1.
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Proof of Selgrade�s theorem

Steps of the proof: Show that

- an attractor for the projectivized �ow PΦ on U �Pd�1 de�nes a
(linear!) subbundle of U �Pd .

- an attractor-repeller pair de�nes an invariant subbundle decomposition
for the linear �ow Φ on U �Rd .

- then one can use the dimension of the subbundles to show that there is a
�nest Morse decomposition into Morse setsMi , hence

- this are the chain recurrent components in U �Pd

- de�ning a decomposition of U �Rd into invariant subbundles
Vi := P�1(Mi ).
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The Morse spectrum of the bilinear system I

Recall: For ε,T > 0 an (ε,T )-chain ζ in U �Pd�1 is given by

n 2 N,T0,T1, . . . ,Tn�1 > T , (u0, p0), . . . , (un, pn) 2 U �Pd�1

such that
d(PΦ(Ti , (ui , pi )), (ui+1, pi+1)) < ε for all i .

With Pxi = pi de�ne the chain exponent of ζ as

λ(ζ) =

 
n�1
∑
i=1
Ti

!�1 n�1
∑
i=1
(log kϕ(Ti , xi , ui )k � log kxik) ,

The Morse spectrum is

ΣMo = fλ 2 R j9εn ! 0, 9Tn ! ∞, (εn,Tn)-chains ζn : limλ(ζn) = λg .
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The Morse spectrum of the bilinear system II

Theorem:

(i) ΣMo =
[`

i=1
ΣMo (Mi )

(ii) Each ΣMo (Mi ) consists of a closed interval [κ�i , κi ].

(iii) For i < j we have κ�i < κ�j and κi < κj .

(iv) ΣLy � ΣMo and the κ�i , κi are actually Lyapunov exponents.
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(Un)stable subbundle

The upper spectral interval ΣMo (M`) = [κ
�
` , κ`] determines the robust

stability of ẋ = A(u(t))x (and stabilizability of the system if the set U is
interpreted as a set of admissible control functions).

The stable, center, and unstable subbundles of U �Rd are de�ned as

L� =
M
j : κj<0

Vj , L0 =
M

j : 02[κ�j ,κj ]
Vj , L+ =

M
j : κ�j >0

Vj .

Corollary. The zero solution of ẋ = A(u(t))x , u 2 U , is exponentially
stable for all u 2 U i¤ κ` < 0 i¤ L� = U �Rd .
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Stability radius

Suppose that 0 2 intΩ and consider the control ranges Ωρ := ρΩ.

The maximal spectral value κ`(ρ) is continuous in ρ and we de�ne the
(asymptotic-) stability radius of this family as

r = inffρ � 0 j9u 2 U ρ : ẋρ = A(u(t))xρ is not exp. stableg
= inffρ � 0 jκ`(ρ) > 0g
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The linear oscillator

The linear oscillator with control/uncertainty in the restoring force:

ẍ + bẋ + [1+ u(t)]x = 0, with u(t) 2 [�ρ, ρ], b = 1.5 > 0.

or, in state space form,�
ẋ1
ẋ2

�
=

�
0 1
�1 �2b

� �
x1
x2

�
+ u(t)

�
0 0
�1 0

� �
x1
x2

�
with u(t) 2 [�ρ, ρ] and b > 0. (For b � 0 the system is unstable even for
constant perturbations.)
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Spectral intervals for the linear oscillator
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Control sets and chain control sets

Theorem. Assume that the Lie algebra rank condition for the system on
Pd�1 holds.

(i) Every chain control set contains a control set Dj with nonvoid interior.

(ii) There are k control sets Dj with nonvoid interior, 0 < ` � k � d , in
Pd�1.

(ii) Exactly one of them is an invariant control set.
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An example: control sets vs chain control sets

Consider the bilinear control system�
ẋ
ẏ

�
=

��
1 0
0 0

�
+ u1(t)

�
0 1
1 0

�
+ u2(t)

�
0 0
0 1

���
x
y

�
with Ω = [0, 12 ]� [1, 2]. For u1 � 0, u2 � 1 we have a double eigenvalue

λ1,2 = 1 of
�
1 0
0 1

�
with eigenspace R2, hence there is a single chain

control set E = P1.
There are two control sets in P1 given by

D1 =
�
�π

4
, 0
�
and D2 =

hπ

4
,

π

2

i
.
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Control sets and chain control sets

Suppose that for ρ < ρ0, i.e. for increasing control ranges ρΩ � ρ0Ω, the
reachable sets in Pd�1 are strictly increasing.

Then for all up to at most d � 1 ρ-values the closures of the control sets
are the chain control sets and the spectral growth rates satisfy

ΣLy (PDj ) = ΣMo (Ej ).

The control sets of the bilinear system in Rd are exactly those cones over
the control sets PDj for which 0 2 (κ�j , κj ).

The bilinear system is completely controllable in Rd n f0g i¤ the projected
system is completely controllable and 0 2 (κ�, κ).
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Concluding remarks

Bilinear control systems may be viewed as linear �ows on vector bundles.

Their topological analysis via chain transitivity, Morse decompositions and
attractors leads to a spectral theory which allows us to �nd results on
controllability and stability.
There are further consequences on stabilizability by (time varying)
feedbacks.
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