University of Teheran January 2019

Spectral Theory for Bilinear Control Systems

Fritz Colonius Universität Augsburg

Fritz Colonius (Universität Augsburg) [Bilinear Control Systems](#page--1-0) January 20, 2019 2/25

 \equiv \cap α

イロト イ押ト イミト イヨト

Introduction

A bilinear control systems has the form

$$
\dot{x}(t) = A_0x(t) + \sum_{i=1}^m u_i(t)A_i x(t) = A(u)x, \ u(t) = (u_i(t))_{i=1,\dots,m} \in \Omega,
$$

with $d \times d$ -matrices $A_0, A_1, \ldots, A_m \in \mathbb{R}^{d \times d}$ and compact convex control range $\Omega \subset \mathbb{R}^m$.

We will consider the associated control flow and controllability properties as well as exponential stability properties.

Crucial insight will be gained by analyzing the projection to (real) projective space $\mathbb{P}^{d-1}.$

Different approaches to bilinear control systems can be found e.g. in D.L. Elliott, Bilinear Control Systems, 2009 San Martin/Seco, Erg.Th.Dyn.Syst.(2010) based on semigroups in Lie groups.

The linear oscillator with control/uncertainty in the restoring force:

$$
\ddot{x} + b\dot{x} + [1 + u(t)]x = 0, \text{ with } u(t) \in [-\rho, \rho], b = 1.5 > 0.
$$

or, in state space form,

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + u(t) \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
$$

with $u(t) \in [-\rho, \rho]$ and $b > 0$.

 \equiv

 $\mathbb{B} \rightarrow \mathbb{R} \mathbb{B}$ is

∢ ロ ▶ ィ 何 ▶ ィ

 OQ

- Linear control flows
- Lyapunov exponents and the projected system
- Selgradeís Theorem and chain control sets
- Proof of Selgradeís Theorem: Morse decompositions and attractor-repeller pairs
- the Morse spectrum
- control sets versus chain control sets

 Ω

ミドイヨド

As in the general case, a bilinear control system defines a control flow on $\mathcal{U} \times \mathbb{R}^d$, given by

$$
\Phi(t, u, x) = (\theta_t u, \varphi(t, x, u)), t \in \mathbb{R}.
$$

The special property of this control flow is its linearity with respect to x ,

$$
\Phi(t, u, \alpha x + \beta y) = \alpha \Phi(t, u, x) + \beta \Phi(t, u, y), \alpha, \beta \in \mathbb{R}.
$$

The state space $\mathcal{U}\times\mathbb{R}^d$ has the structure of a (topologically trivial) vector bundle with compact metric base space \mathcal{U} . Furthermore, we know that the periodic points are dense for the shift *θ*, hence the base space is chain transitive.

Fritz Colonius (Universit‰t Augsburg) [Bilinear Control Systems](#page--1-0) January 20, 2019 5 / 25

 \equiv \curvearrowleft \curvearrowright

イロト イ母ト イヨト イヨト

Projective space

Linearity of $\Phi(t, u, x)$ in x immediately implies that one gets an induced flow on $\mathcal{U} \times \mathbb{P}^{d-1}$.

 \mathbb{P}^{d-1} may be obtained by identifying opposite points on the unit sphere. For a solution $x(t) = \varphi(t, x_0, u)$ of $\dot{x} = A(u)x$ one obtains with $s(t) = \frac{x(t)}{\|x(t)\|}$, where $\|x(t)\| = \sqrt{\langle x(t), x(t) \rangle}$, $\dot{\boldsymbol{s}}(t)=\left[A(u)-\boldsymbol{s}(t)^{T}A(u)\boldsymbol{s}(t)\cdot\boldsymbol{l}\right]\boldsymbol{s}(t).$

In fact,

$$
\dot{s} = \frac{\dot{x} ||x|| - x \langle \dot{x}, x \rangle / ||x||}{||x||^2} = \frac{A(u)x ||x|| - x \langle A(u)x, x \rangle / ||x||}{||x||^2}
$$

$$
= [A(u) - s(t)^T A(u)s(t) \cdot I] s(t).
$$

Abbreviating $h(s, u) = \left[A(u) - s^T A(u) s \cdot l\right] s$ we can write this as

$$
\dot{s}(t) = h(s(t), u(t))
$$
 on \mathbb{S}^{d-1} .

The s[u](#page--1-0)btracted term $\lceil s^{\mathsf{T}} A(u) s \rceil$ s is the radial c[om](#page-4-0)[p](#page-6-0)[o](#page-4-0)[ne](#page-5-0)[n](#page-6-0)[t of](#page--1-0) $A(u) s.$ $A(u) s.$ OQ Fritz Colonius (Universit‰t Augsburg) [Bilinear Control Systems](#page--1-0) January 20, 2019 6 / 25

The exponential growth rate or Lyapunov exponent of a solution for (u, x_0) is

$$
\lambda(u,x_0)=\limsup_{t\to\infty}\frac{1}{t}\log\|\varphi(t,x_0,u)\|.
$$

Somewhat surprisingly, also the Lyapunov exponents are determined by the induced system on projective space,

$$
\lambda(u, x_0) = \limsup_{t \to \infty} \frac{1}{t} \int_0^t q(u(\tau), s(\tau)) d\tau \text{ with } q(u, s) := s^{\top} A(u) s.
$$

 \equiv \cap a \sim

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Theorem. Let Φ be a continuous linear flow on on a vector bundle и ×
.. \mathbb{R}^d with compact chain transitive base space \mathbb{R}^d . Then the induced flow $\mathbb{P}\Phi$ on $\mathcal{U}\times\mathbb{P}^{d-1}$ has only finitely many chain recurrent components $\mathcal{M}_1, \ldots, \mathcal{M}_{\ell}, 1 \leq \ell \leq d.$ They have the following form:

Every \mathcal{M}_i defines an invariant subbundle via

$$
\mathcal{V}_i := \mathbb{P}^{-1}(\mathcal{M}_i) = \{ (u, x) \in \mathcal{U} \times \mathbb{R}^d \mid (u, \mathbb{P}x) \in \mathcal{M}_i \}
$$

and the following decomposition into a Whitney sum holds

$$
\mathcal{U}\times\mathbb{R}^d=\mathcal{V}_1\oplus\cdots\oplus\mathcal{V}_\ell.
$$

Fritz Colonius (Universität Augsburg) [Bilinear Control Systems](#page--1-0) January 20, 2019 8 / 25

Consider the linear autonomous ordinary differential equation

$$
\dot{x}=Ax.
$$

For an eigenvector x corresponding to a real eigenvalue *µ* of A the point $\mathbb{P} \times$ is an equilibrium in $\mathbb{P}^{d-1}.$

More generally, let $\lambda_1, \ldots, \lambda_\ell$ be the pairwise different real parts of the eigenvalues of A and denote by $V(\lambda_i)$ be the direct sum of all generalized eigenspaces for the eigenvalues with real part equal to λ_i . Then the $\mathcal{M}_i := \mathbb{P} V_i$ are the chain recurrent components and

$$
\mathbb{R}^d = \bigoplus_{i=1}^{\ell} V(\lambda_i) = \bigoplus_{i=1}^{\ell} \mathbb{P}^{-1} \mathcal{M}_i.
$$

The chain control sets

Corollary. For a bilinear control system $\dot{x} = A(u)x$, $u(t) \in \Omega$, there are $1 \leq \ell \leq d$ chain control sets E_i for the induced system in projective space and there is a Whitney decomposition

$$
\mathcal{U}\times\mathbb{R}^d=\bigoplus_{i=1}^\ell\mathbb{P}^{-1}\mathcal{E}_i,
$$

where the \mathcal{E}_i are the lifts of the chain control sets E_i in \mathbb{P}^{d-1} ,

$$
\mathcal{E}_i = \{ (u, p) \in \mathcal{U} \times \mathbb{P}^{d-1} \mid s(t, p, u) \in E_i \text{ for } t \in \mathbb{R} \},
$$

with $s(t, p, u)$ denoting the solution of

$$
\dot{s}(t) = \left[A - s(t)^T A s(t) \cdot I\right] s(t), s(0) = p.
$$

Fritz Colonius (Universität Augsburg) [Bilinear Control Systems](#page--1-0) January 20, 2019 10 / 25

 \equiv \curvearrowleft \curvearrowright

イロト イ母ト イヨト イヨト

- Proof of Selgrade's theorem
- How are the Lyapunov exponents related to the chain control sets?
- Do the chain control sets coincide with the control sets in projective space?
- What about the control sets in \mathbb{R}^d ?
- Consequences for stability and stabilizability

 \equiv

 OQ

- 4 何 ト 4 ヨ ト 4 ヨ ト

 \leftarrow \Box \rightarrow

This is based on the relation between chain recurrence, Morse decompositions and attractor-repeller pairs.

Recall:

A **Morse decomposition** of a flow is given by $\{\mathcal{M}_i \mid i = 1, \ldots, \ell\}$ with nonvoid, pairwise disjoint and compact isolated invariant sets s.t. $(i) \forall x \in X : \omega(x), \alpha(x) \subset \bigcup_{i=1}^{\ell} \mathcal{M}_i;$ (ii) there are no cycles.

If the number of chain recurrent components is finite, this corresponds to the finest Morse decomposition. In particular, if the number of chain control sets in a compact invariant set is finite, this corresponds to the finest Morse decomposition of the control flow.

Definition. For a flow on a compact metric space X an attractor A is a compact invariant set with a nbhd N such that

$$
A = \omega(N) := \{ y \in X \mid \exists (x_n) \in N, \exists t_n \to \infty : y = \lim x_n \cdot t_n \}.
$$

A compact invariant set R is a **repeller** if it has a nbhd N^{\ast} such that

$$
R = \alpha(N^*) := \{y \in X \mid \exists (x_n) \in N^*, \exists t_n \rightarrow -\infty : y = \lim x_n \cdot t_n)\}.
$$

Proposition. For every attractor A

$$
A^* := \{ x \in X \, | \omega(x) \cap A = \varnothing \}
$$

is a repeller, called the complementary repeller.

 \equiv \curvearrowleft a \curvearrowright

イロト イ押ト イヨト イヨト

Morse decompositions and attractor-repeller pairs

Theorem. Let \mathcal{M}_i , $i = 1, ..., n$, be subsets of X. Equivalent are:

(i) $\{M_i | i = 1, \ldots, \}$ form a Morse decomposition;

(ii) there is an increasing sequence of attractors

$$
\varnothing = A_0 \subset A_1 \subset \cdots \subset A_n = X
$$

such that $\mathcal{M}_{n-i} = A_{i+1} \cap A_i^*$ for $0 \leq i \leq n-1$.

Example.

$$
\dot{x} = x(x-1)(x-2)^2(x-3).
$$

A Morse decomposition is given by

$$
\mathcal{M}_1 = \{0\} \preceq \mathcal{M}_3 = \{1\} \succeq \mathcal{M}_2 = [2,3].
$$

Here $n=3$, $A_0=\varnothing$, $A_0^*=[0,3]$, $A_1=\{1\}$, $A_1^*=\{0\}\cup[2,3]$, $A_2=[1,3], A_2^*=\{0\}, A_3=[0,3], A_3^*=\varnothing$ and

$$
A_1 \cap A_0^* = \{1\} = \mathcal{M}_3, A_2 \cap A_1^* = [2, 3] = \mathcal{M}_2, A_3 \cap A_2^* = \{0\} = \mathcal{M}_1.
$$

Steps of the proof: Show that

- an attractor for the projectivized flow $\mathbb{P}\Phi$ on $\mathcal{U}\times\mathbb{P}^{d-1}$ defines a (linear!) subbundle of $\mathcal{U} \times \mathbb{P}^d$.

- an attractor-repeller pair defines an invariant subbundle decomposition for the linear flow Φ on $\mathcal{U} \times \mathbb{R}^d$.

- then one can use the dimension of the subbundles to show that there is a finest Morse decomposition into Morse sets \mathcal{M}_i , hence

- this are the chain recurrent components in $\mathcal{U} \times \mathbb{P}^d$

- defining a decomposition of $\mathcal{U}\times\mathbb{R}^d$ into invariant subbundles $\mathcal{V}_i := \mathbb{P}^{-1}(\mathcal{M}_i).$

The Morse spectrum of the bilinear system I

Recall: For *ε*, $T > 0$ an (ε, T) -chain ζ in $U \times \mathbb{P}^{d-1}$ is given by

$$
n \in \mathbb{N}, T_0, T_1, \ldots, T_{n-1} > T, (u_0, p_0), \ldots, (u_n, p_n) \in \mathcal{U} \times \mathbb{P}^{d-1}
$$

such that

$$
d(\mathbb{P}\Phi(\mathcal{T}_i,(u_i,p_i)),(u_{i+1},p_{i+1})) < \varepsilon
$$
 for all *i*.

With $Px_i = p_i$ define the chain exponent of ζ as

$$
\lambda(\zeta) = \left(\sum_{i=1}^{n-1} T_i\right)^{-1} \sum_{i=1}^{n-1} \left(\log \|\varphi(T_i, x_i, u_i)\| - \log \|x_i\|\right),
$$

The Morse spectrum is

$$
\Sigma_{Mo} = \{ \lambda \in \mathbb{R} \, | \exists \varepsilon_n \to 0, \exists \, T_n \to \infty, (\varepsilon_n, T_n)\text{-chains } \zeta_n : \lim \lambda(\zeta_n) = \lambda \} \, .
$$

Fritz Colonius (Universität Augsburg) [Bilinear Control Systems](#page--1-0) January 20, 2019 16 / 25

 \equiv \curvearrowleft a \curvearrowright

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Theorem:

\n- (i)
$$
\Sigma_{Mo} = \bigcup_{i=1}^{\ell} \Sigma_{Mo}(\mathcal{M}_i)
$$
\n- (ii) Each $\Sigma_{Mo}(\mathcal{M}_i)$ consists of a closed interval $[\kappa_i^*, \kappa_i]$.
\n- (iii) For $i < j$ we have $\kappa_i^* < \kappa_j^*$ and $\kappa_i < \kappa_j$.
\n- (iv) $\Sigma_{Ly} \subset \Sigma_{Mo}$ and the κ_i^*, κ_i are actually Lyapunov exponents.
\n

 \equiv \cap α

イロト イ部 トイヨト イヨト

The upper spectral interval $\Sigma_{Mo}(\mathcal{M}_\ell) = [\kappa_\ell^*, \kappa_\ell]$ determines the robust stability of $\dot{x} = A(u(t))x$ (and stabilizability of the system if the set $\mathcal U$ is interpreted as a set of admissible control functions).

The stable, center, and unstable subbundles of $\mathcal{U} \times \mathbb{R}^{d}$ are defined as

$$
L^{-}=\bigoplus_{j:\; \kappa_{j}<0}\mathcal{V}_{j},\; L^{0}=\bigoplus_{j:\; 0\in [\kappa_{j}^{*},\kappa_{j}]}\mathcal{V}_{j}, L^{+}=\bigoplus_{j:\; \kappa_{j}^{*}>0}\mathcal{V}_{j}.
$$

Corollary. The zero solution of $\dot{x} = A(u(t))x, u \in \mathcal{U}$, is exponentially stable for all $u \in \mathcal{U}$ iff $\kappa_{\ell} < 0$ iff $L^{-} = \mathcal{U} \times \mathbb{R}^{d}$.

Fritz Colonius (Universität Augsburg) [Bilinear Control Systems](#page--1-0) January 20, 2019 18 / 25

 $\mathsf{Suppose\ that}\ 0\in\mathsf{int}\Omega$ and consider the control ranges $\Omega^\rho:=\rho\Omega.$

The maximal spectral value $\kappa_\ell(\rho)$ is continuous in ρ and we define the (asymptotic-) stability radius of this family as

$$
r = \inf \{ \rho \ge 0 \, | \exists u \in \mathcal{U}^{\rho} : \dot{x}^{\rho} = A(u(t))x^{\rho} \text{ is not } \exp. \text{ stable} \}
$$

=
$$
\inf \{ \rho \ge 0 \, | \kappa_{\ell}(\rho) > 0 \}
$$

E. OQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

The linear oscillator with control/uncertainty in the restoring force:

$$
\ddot{x} + b\dot{x} + [1 + u(t)]x = 0, \text{ with } u(t) \in [-\rho, \rho], b = 1.5 > 0.
$$

or, in state space form,

$$
\left[\begin{array}{c}\n\dot{x}_1 \\
\dot{x}_2\n\end{array}\right] = \left[\begin{array}{cc}\n0 & 1 \\
-1 & -2b\n\end{array}\right] \left[\begin{array}{c}\nx_1 \\
x_2\n\end{array}\right] + u(t) \left[\begin{array}{cc}\n0 & 0 \\
-1 & 0\n\end{array}\right] \left[\begin{array}{c}\nx_1 \\
x_2\n\end{array}\right]
$$

with $u(t) \in [-\rho, \rho]$ and $b > 0$. (For $b \le 0$ the system is unstable even for constant perturbations.)

 \equiv Ω

イロト イ母 トイラト イヨト

Spectral intervals for the linear oscillator

- **Theorem.** Assume that the Lie algebra rank condition for the system on \mathbb{P}^{d-1} holds.
- (i) Every chain control set contains a control set D_i with nonvoid interior.
- (ii) There are k control sets D_i with nonvoid interior, $0 < \ell \leq k \leq d$, in \mathbb{P}^{d-1} .
- (ii) Exactly one of them is an invariant control set.

Consider the bilinear control system

$$
\left(\begin{array}{c} \dot{x}\\ \dot{y} \end{array}\right)=\left[\left(\begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right)+u_1(t)\left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)+u_2(t)\left(\begin{array}{cc} 0 & 0\\ 0 & 1 \end{array}\right)\right]\left(\begin{array}{c} x\\ y \end{array}\right)
$$

with $\Omega=[0,\frac{1}{2}]$ $\lfloor \frac{1}{2} \rfloor \times [1,2]$. For $u_1 \equiv 0$, $u_2 \equiv 1$ we have a double eigenvalue $\lambda_{1,2}=1$ of $\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$ with eigenspace \mathbb{R}^2 , hence there is a single chain control set $E=\mathbb{P}^1.$

There are two control sets in \mathbb{P}^1 given by

$$
D_1=\left(-\frac{\pi}{4},0\right) \text{ and } D_2=\left[\frac{\pi}{4},\frac{\pi}{2}\right].
$$

Fritz Colonius (Universität Augsburg) [Bilinear Control Systems](#page--1-0) January 29, 2019 23 / 25

Suppose that for $\rho < \rho'$, i.e. for increasing control ranges $\rho \Omega \subset \rho' \Omega$, the reachable sets in \mathbb{P}^{d-1} are strictly increasing.

Then for all up to at most $d-1$ ρ -values the closures of the control sets are the chain control sets and the spectral growth rates satisfy

$$
\Sigma_{Ly}(\mathbb{P}D_j)=\Sigma_{Mo}(E_j).
$$

The control sets of the bilinear system in \mathbb{R}^d are exactly those cones over the control sets $\mathbb{P}D_j$ for which $0 \in (\kappa_j^*, \kappa_j)$.

The bilinear system is completely controllable in $\mathbb{R}^d \setminus \{0\}$ iff the projected system is completely controllable and $0 \in (\kappa^*, \kappa)$.

Bilinear control systems may be viewed as linear flows on vector bundles.

Their topological analysis via chain transitivity, Morse decompositions and attractors leads to a spectral theory which allows us to find results on controllability and stability.

There are further consequences on stabilizability by (time varying) feedbacks.

 $PQQQ$

イロト イ母ト イヨト イヨト