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Introduction

A bilinear control systems has the form

x(t) = Aox(t) + Z ui(t)Aix(t) = A(u)x, u(t) = (ui(t))iz1,.m € Q,
i=1
with d X d-matrices Ag, A1,..., An € R?*9 and compact convex control

range (3 C R™.

We will consider the associated control flow and controllability properties
as well as exponential stability properties.

Crucial insight will be gained by analyzing the projection to (real)
projective space P91

Different approaches to bilinear control systems can be found e.g. in
D.L. Elliott, Bilinear Control Systems, 2009

San Martin/Seco, Erg.Th.Dyn.Syst.(2010) based on semigroups in Lie
groups.
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The linear oscillator

The linear oscillator with control/uncertainty in the restoring force:
X+ bx+ [1+4 u(t)]x =0, with u(t) € [-p,p],b=15>0.

or, in state space form,

=0 2o [ o]

with u(t) € [—p,p] and b > 0.
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The linear control flow

As in the general case, a bilinear control system defines a control flow on
U x RY, given by

D(t,u,x) = (0ru, @(t, x,u)), t € R.
The special property of this control flow is its linearity with respect to x,
D(t,u,ax+ By) = ad(t, u, x) + pP(t, u,y),a, B € R.

The state space U x IRY has the structure of a (topologically trivial)
vector bundle with compact metric base space U.

Furthermore, we know that the periodic points are dense for the shift 0,
hence the base space is chain transitive.
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Projective space

Linearity of ®(t, u, x) in x immediately implies that one gets an induced
flow on U x P91,

P91 may be obtained by identifying opposite points on the unit sphere.
For a solution x(t) = @(t, x0, u) of x = A(u)x one obtains with

s(t) = marey. where [[x(8)]| = /() x (D),
s(t) = [A<u) —s(t)TA(u)s(t) /} s(t).
In fact,
o = Xl =x (o) ZIxI_ ACw)x ] = x (A(u)x, x) / |I]

Ix]? 1]
= [AW) = s T Alw)s(e) - 1] ().
Abbreviating h(s, u) = [A(u) —s" A(u)s - I] s we can write this as
5(t) = h(s(t), u(t)) on S971.

The subtracted term [sT A(u)s] s is the radial component of A(u)s.
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Exponential growth rates

The exponential growth rate or Lyapunov exponent of a solution for
(u,x0) is

) 1
AMu,xp) = I|rtn sup— log [|@(t, xo, u)]| -

Somewhat surprisingly, also the Lyapunov exponents are determined by the
induced system on projective space,

Mu, ) = limsup /th(u(r),s(r))d’c with q(u,s) = sTA(u)s.

t—o00
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Selgrade’s Theorem

Theorem. Let @ be a continuous linear flow on on a vector bundle

U x R? with compact chain transitive base space R?. Then the induced
flow IP® on U x PY~ has only finitely many chain recurrent components
My, ..., My, 1<t <d. They have the following form:

Every M, defines an invariant subbundle via
V=P Y (M;) = {(u,x) €U xR |(u,Px) € M;}
and the following decomposition into a Whitney sum holds

UXRI=VI @V,
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A simple example

Consider the linear autonomous ordinary differential equation

x = Ax.

For an eigenvector x corresponding to a real eigenvalue y of A the point

IPx is an equilibrium in P91,

More generally, let A1,..., A, be the pairwise different real parts of the

eigenvalues of A and denote by V/(A;) be the direct sum of all generalized

eigenspaces for the eigenvalues with real part equal to A;. Then the
M := PV, are the chain recurrent components and

14
RY=PV(A)=EPP M,
j i=1
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The chain control sets

Corollary. For a bilinear control system x = A(u)x, u(t) € Q), there are
1 < ¢ < d chain control sets E; for the induced system in projective space
and there is a Whitney decomposition

/
UxR!=PPrre,
i—1
where the &; are the lifts of the chain control sets E; in P91,

E={(up)elU xP? 1 |s(t,p,u) € E fort € R},

with s(t, p, u) denoting the solution of

s(t) = [A —s(t)T As(t) - /} s(t),s(0) = p.
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Questions:

- Proof of Selgrade's theorem
- How are the Lyapunov exponents related to the chain control sets?

- Do the chain control sets coincide with the control sets in projective
space?

- What about the control sets in R9 ?

- Consequences for stability and stabilizability
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On the proof of Selgrade’s theorem

This is based on the relation between chain recurrence, Morse
decompositions and attractor-repeller pairs.

Recall:

A Morse decomposition of a flow is given by {M;|i =1,..., ¢} with
nonvoid, pairwise disjoint and compact isolated invariant sets s.t.

() Vx € X : w(x), a(x) C Uy M

(i) there are no cycles.

If the number of chain recurrent components is finite, this corresponds to
the finest Morse decomposition. In particular, if the number of chain

control sets in a compact invariant set is finite, this corresponds to the
finest Morse decomposition of the control flow.
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Relations to attractors

Definition. For a flow on a compact metric space X an attractor A is a
compact invariant set with a nbhd N such that

A=w(N):={y € X|3(xy) € N,3t, > 00:y =Ilimx,-t,}.
A compact invariant set R is a repeller if it has a nbhd N* such that
R=a(N*):={y e X|3(xp) € N*,3t, — —c0:y =limx, - t,) }.
Proposition. For every attractor A
A ={xeX|w(x)NA=2}

is a repeller, called the complementary repeller.
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Morse decompositions and attractor-repeller pairs

Theorem. Let M;,i=1,..., n, be subsets of X. Equivalent are:
i) {M;li=1,..., } form a Morse decomposition;
(i) there is an increasing sequence of attractors

G=ACA C---CA =X
such that M,_; = A1 NA  for0 <i<n—-1
Example.

x = x(x—1)(x —2)*(x — 3).
A Morse decomposition is given by

Mp ={0} M3 ={1} = My =[2,3].

Here n =3,A) =@, A; = [0,3], A1 = {1}, A = {0} U [2,3],
A2 = [1,3],/4; = {0},/43 = [0,3],/4%( = & and

A10A32{1}2M3,A2QA1< = [2,3] :Mz,AgﬂAz :{0} = M;.
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Proof of Selgrade’s theorem

Steps of the proof: Show that
- an attractor for the projectivized flow IP® on U x P9~ defines a
(linear!) subbundle of U x IP¢.

- an attractor-repeller pair defines an invariant subbundle decomposition
for the linear flow @ on U x RY.

- then one can use the dimension of the subbundles to show that there is a
finest Morse decomposition into Morse sets M, hence

- this are the chain recurrent components in U x IP?

- defining a decomposition of & x RY into invariant subbundles

V= H)_l(./\/l,').
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The Morse spectrum of the bilinear system |

Recall: Fore, T > 0 an (g, T)-chain ¢ in U x P9~ is given by
n€N, To, T1,.... Too1 > T, (o, po), ... (tn, pp) €U x P71

such that
d(PP®(T;, (ui, pi)), (uit1, pi+1)) < € for all /.

With Px; = p; define the chain exponent of { as

n—1 —
= (E Ti> Z (log [|@(Ti, xi, ui) || — log [|xi]) .
i=1 i=1

The Morse spectrum is

vmo = {A € R|Fe, — 0,3T, — o0, (g5, T)-chains £, : imA({,) =A}.
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The Morse spectrum of the bilinear system Il

Theorem:

. 4
(') 2pMo = . Z‘Mo(-/\/ti)

i=1
(if) Each Zp,(M;) consists of a closed interval [k7, x;].
(iii) For i < j we have x} < &7 and k; < k;.
(

iv) 2y C Xmo and the «7, k; are actually Lyapunov exponents.
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(Un)stable subbundle

The upper spectral interval Xy, (M) = [x}, x| determines the robust
stability of x = A(u(t))x (and stabilizability of the system if the set U/ is
interpreted as a set of admissible control functions).

The stable, center, and unstable subbundles of U/ x R? are defined as

L =h Vv, L= p viir= P v

Ji k<0 j: OE[KJ’.‘,KJ] J: Kj>0

Corollary. The zero solution of x = A(u(t))x, u € U, is exponentially
stable for all u € U iff k) < 0 iff L= = U x RY.
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Stability radius

Suppose that 0 € int() and consider the control ranges ()¢ := p().

The maximal spectral value x;(p) is continuous in p and we define the
(asymptotic-) stability radius of this family as

ro= inf{p>0|Fuelf:xF = A(u(t))xP is not exp. stable }
= inf{p > 0x((p) >0}
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The linear oscillator

The linear oscillator with control/uncertainty in the restoring force:
X+ bx+ 1+ u(t)]x =0, with u(t) € [-p,p],b=1.5>0.
or, in state space form,
N 0 1 X1 0 O X1
MRS RN

with u(t) € [—p,p] and b > 0. (For b < 0 the system is unstable even for
constant perturbations.)
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Spectral intervals for the linear oscillator

e 3 I S S S KN S S S T RN S SN S SR AN SR S S S R S S
0.0 0.5 1.D 1.5 2.0 28
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Control sets and chain control sets

Theorem. Assume that the Lie algebra rank condition for the system on
P91 holds.

(i) Every chain control set contains a control set D; with nonvoid interior.

(i) There are k control sets D; with nonvoid interior, 0 < £ < k < d, in
Pt

(ii) Exactly one of them is an invariant control set.
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An example: control sets vs chain control sets

Consider the bilinear control system

(5)=10o o) v (¥ o) e (5 5)[ ()

with Q = [0, 1] x [1,2]. For uy =0, up =1 we have a double eigenvalue

Ao =1of [ é (1) ] with eigenspace R2, hence there is a single chain

control set E = P!,
There are two control sets in IP! given by

o= (L) o= 1]
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Control sets and chain control sets

Suppose that for p < p’, i.e. for increasing control ranges pQ) C p'Q), the
reachable sets in P91 are strictly increasing.

Then for all up to at most d — 1 p-values the closures of the control sets
are the chain control sets and the spectral growth rates satisfy

21y (PDj) = Zmo ().

The control sets of the bilinear system in IRY are exactly those cones over
the control sets IPD; for which 0 € (x7, x;).

The bilinear system is completely controllable in IRY \ {0} iff the projected
system is completely controllable and 0 € (x*, x).
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Concluding remarks

Bilinear control systems may be viewed as linear flows on vector bundles.

Their topological analysis via chain transitivity, Morse decompositions and
attractors leads to a spectral theory which allows us to find results on
controllability and stability.

There are further consequences on stabilizability by (time varying)
feedbacks.
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