University of Teheran January 2019

Control under Communication Constraints and Invariance Entropy

Fritz Colonius Universität Augsburg

Fritz Colonius (Universität Augsburg) [Invariance Entropy](#page--1-0) January 21, 2019 2 / 35

イロト イ母 トイミト イミト ニヨー りんぐ

Determine **fundamental limitations** in control

Here: Describe the "information" needed to make a subset invariant for a control system

Classically, entropy is used in dynamical systems theory in order to describe the information generated by the systems and to classify them.

A recent survey on various definitions and application areas of **entropy** is Amigó et al. DCDS B (2015).

Control systems:

Delchamps (1990) (ergodic theory for quantized feedback)

Topological versions have been analyzed, in particular, by

Nair, Evans, Mareels and Moran (2004) Kawan, Springer LNM Vol. 2089 (2013)

KED KARD KED KED E VOQO

Control systems

We consider control system in discrete time given by

$$
x_{n+1}=f(x_n,u_n), n\in\mathbb{N}=\{0,1,...\},\
$$

where f : M - Ω ! M is continuous and M and Ω are metric spaces. The solution with $x_0 = x$ and $u = (u_n) \in \mathcal{U} := \Omega^N$ is denoted by $\varphi(n, x, u)$, $n \in \mathbb{N}$.

We assume that for every $x \in Q \subset M$ there is $u(x) \in \Omega$ with $f(x, u(x)) \in Q$.

What is the "information" necessary to keep the system in Q ?

 \equiv \curvearrowleft \curvearrowright

Control systems

We consider control system in discrete time given by

$$
x_{n+1}=f(x_n,u_n), n\in\mathbb{N}=\{0,1,...\},\
$$

where $f : M \times \Omega \to M$ is continuous and M and Ω are metric spaces. The solution with $x_0 = x$ and $u = (u_n) \in \mathcal{U} := \Omega^N$ is denoted by $\varphi(n, x, u)$, $n \in \mathbb{N}$.

We assume that for every $x \in Q \subset M$ there is $u(x) \in \Omega$ with $f(x, u(x)) \in Q$.

What is the "information" necessary to keep the system in Q ?

Motivation: Suppose that the present state x_n of the system is measured. If the controller has complete information about the present state, it can adjust a feedback control $u(x)$ appropriately. However, if the measurement is sent to the controller via a (noiseless) digital channel with bounded data rate it is of interest to determine the minimal data rate needed to make Q invariant. More abstractly: What is the minimal average information needed to make Q invariant? $\mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B} \otimes \$ OQ

Fritz Colonius (Universität Augsburg) [Invariance Entropy](#page--1-0) January 21, 2019 4 / 35

This talk consists of three parts:

- Some motivation from classical entropy of dynamical systems
- Topological invariance entropy for control systems
- coder-controllers and minimal bit rates
- Relations to controllability properties

 \equiv \circ \circ \sim

ミトマミト

∢ ロ ▶ ィ 何 ▶ ィ

Topological entropy for dynamical systems

Let $T: X \rightarrow X$ be a continuous map on a compact metric space. Suppose B is a finite open cover of X, i.e., the sets in B are open, their union is X .

For an **itinerary** $\alpha = (B_0, B_1, \ldots, B_{n-1}) \in \mathcal{B}^n$ let

 $\mathcal{B}_n(\alpha) = \{x \in X \, \big| \, T^j(x) \in B_j \text{ for } j = 0, \ldots, n-1 \} = B_0 \cap \cdots \cap T^{-(n-1)}B_n.$

They again form an open cover of X ,

$$
\mathfrak{B}^{(n)}=\{\mathcal{B}_n(\alpha)\,|\alpha\in\mathcal{B}^n\}.
$$

Denote the minimal number of elements of a subcover by $\mathcal{N}(\mathfrak{B}^{(n)}).$

Topological entropy for dynamical systems

Let $T: X \rightarrow X$ be a continuous map on a compact metric space. Suppose B is a finite open cover of X, i.e., the sets in B are open, their union is X .

For an **itinerary** $\alpha = (B_0, B_1, \ldots, B_{n-1}) \in \mathcal{B}^n$ let

 $\mathcal{B}_n(\alpha) = \{x \in X \, \big| \, T^j(x) \in B_j \text{ for } j = 0, \ldots, n-1 \} = B_0 \cap \cdots \cap T^{-(n-1)}B_n.$

They again form an open cover of X ,

$$
\mathfrak{B}^{(n)}=\{\mathcal{B}_n(\alpha)\,|\alpha\in\mathcal{B}^n\}.
$$

Denote the minimal number of elements of a subcover by $\mathcal{N}(\mathfrak{B}^{(n)}).$ Then the entropy of β is given by

$$
h(\mathcal{B}, T) = \lim_{n \to \infty} \frac{1}{n} \log N(\mathfrak{B}^{(n)})
$$

and the **topological entropy** of T is

$$
h_{top}(T)=\sup_Bh(\mathcal{B},T).
$$

Adler, Konheim, McAndrew (1965)

Fritz Colonius (Universität Augsburg) [Invariance Entropy](#page--1-0) January 21, 2019 7 / 35

Consider the **logistic map** on the interval $X = [0, 1]$ given by

$$
F_4(x) = 4x(1-x), x \in [0,1].
$$

The topological entropy of F_4 is

$$
h_{top}(F_4) = \log_2 2 = 1 > 0.
$$

Hence this is a chaotic map.

 \equiv

 Ω

 $\mathbb{B} \rightarrow \mathbb{R} \mathbb{B}$ is

- ← ロ ト - → 同 ト - ←

Metric entropy for dynamical systems

For a probability measure μ and a partition $\mathcal P$ of X the **Shannon entropy** is

$$
H_{\mu}(\mathcal{P}) = -\sum_{P \in \mathcal{P}} \mu(P) \log \mu(P).
$$

Let μ be invariant for a map $\mathcal T$ on X , i.e., $\mu(\mathcal T^{-1}B)=\mu(B)$ for all $B \subset X$.

 \equiv \cap a \sim

イロト イ母ト イヨト

Metric entropy for dynamical systems

For a probability measure μ and a partition $\mathcal P$ of X the **Shannon entropy** is

$$
H_{\mu}(\mathcal{P}) = -\sum_{P \in \mathcal{P}} \mu(P) \log \mu(P).
$$

Let μ be invariant for a map $\mathcal T$ on X , i.e., $\mu(\mathcal T^{-1}B)=\mu(B)$ for all $B \subset X$.

For an **itinerary** $\alpha = (P_0, P_1, ..., P_{n-1}) \in \mathcal{P}^n$ let

 $P_n(\alpha) = \{x \in X \, \big| \, T^j(x) \in P_j \text{ for all } j \} = P_0 \cap T^{-1} P_1 \cap \cdots \cap T^{-(n-1)} P_{n-1}.$

They yield a partition $\mathcal{P}^{(n)} = \{P_n(\alpha) | \alpha \in \mathcal{P}^n\}$ and

$$
h_{\mu}(\mathcal{P}, T) := \lim_{n \to \infty} \frac{1}{n} H_{\mu}(\mathcal{P}^{(n)}) .
$$

The **Kolmogorov-Sinai entropy** of T is

$$
h_{\mu}(T)=\sup_{\mathcal{P}}h_{\mu}(\mathcal{P},T).
$$

Fritz Colonius (Universität Augsburg) [Invariance Entropy](#page--1-0) June 10 / 35

The logistic map again

Recall

$$
F_4(x) = 4x(1-x) \text{ on } [0,1].
$$

 $\mathsf A$ (trivial) invariant measure is $\mu = \delta_0$ with entropy $h_{\delta_0}(F_4) = 0.$ A nontrivial invariant measure is given by its density (with respect to Lebesgue measure)

$$
\frac{1}{\pi\sqrt{x(1-x)}}, x\in [0,1].
$$

The corresponding **metric entropy** is

$$
h_\mu(F_4)=\log_2 2=1
$$

(hence equal to the topological entropy).

 \equiv Ω

イロト イ母ト イヨト イヨト

The **Variational Principle** states that

$$
\sup_{\mu} h_{\mu}(T) = h_{top}(T)
$$

and invariant measures μ with maximal entropy, i.e., $h_u(T) = h_{too}(T)$, are of special relevance.

For smoth maps, the entropy can often be characterized by the positive Lyapunov exponents.

 \equiv \cap a \sim

イロト イ母 トイラト イヨト

Describe the **minimal information** to make a compact $Q \subset M$ invariant for

$$
x_{n+1}=f(x_n,u_n), u_n\in\Omega,
$$

with solutions $\varphi(n, x_0, u)$, $n \in \mathbb{N}$, in *M*.

Here this will be done in a topological framework.

Topological invariance entropy is based on **itineraries in Q** corresponding to **invariant open covers** of Q . They are constructed by feedbacks keeping the system in Q and replace the open covers.

Observe: This is not directly related to the entropy of the uncontrolled system which may behave very wildly in Q, while Q itself may be invariant. Hence the entropy of the dynamical system may be positive while the invariance problem is trivial.

KED KARD KED KED E VOQO

Example

 $f_\alpha(x, \omega) = x + \sigma \cos(2\pi x) + A\omega + \alpha \mod 1, \ \omega \in \Omega = [-1, 1].$ With $A = 0.05$, $\sigma = 0.1$, $\alpha = 0.08$ consider the set $Q = [0.2, 0.5]$.

Topological invariance entropy for control systems

An **invariant open cover** $\mathcal{C} = (0, \mathcal{B}, F)$ is given by $\tau \in \mathbb{N}$, an open cover B of Q and $F : \mathcal{B} \to \Omega^{\tau}$ with

 $\varphi(j, B, F(B)) \subset \text{int}Q$ for $j = 1, \ldots, \tau$ and $B \in \mathcal{B}$.

KED KARD KED KED E VOQO

Topological invariance entropy for control systems

An **invariant open cover** $C = (\tau, \mathcal{B}, F)$ is given by $\tau \in \mathbb{N}$, an open cover B of Q and $F : \mathcal{B} \to \Omega^{\tau}$ with

$$
\varphi(j, B, F(B)) \subset \text{int}Q \text{ for } j = 1, ..., \tau \text{ and } B \in \mathcal{B}.
$$

For a *C*-itinerary $\alpha = (B_0, \ldots, B_{n-1}) \in \mathcal{B}^n$ define $u_{\alpha} = (F(B_0), F(B_1), ...)$ and

 $B_n(\alpha) = \{x \in Q \, | \, \varphi(i\tau, x, u_\alpha) \in B_i \text{ for } i = 0, \ldots, n-1 \}.$

These sets again form an open cover of Q,

$$
\mathfrak{B}^{(n)}=\{B_n(\alpha)\,|\alpha\in\mathcal{B}^n\}.
$$

イロト イ何 トイヨ トイヨ トーヨー つなべ

Topological invariance entropy for control systems

An **invariant open cover** $C = (\tau, \mathcal{B}, F)$ is given by $\tau \in \mathbb{N}$, an open cover B of Q and $F : \mathcal{B} \to \Omega^{\tau}$ with

$$
\varphi(j, B, F(B)) \subset \text{int}Q \text{ for } j = 1, ..., \tau \text{ and } B \in \mathcal{B}.
$$

For a C-itinerary $\alpha = (B_0, \ldots, B_{n-1}) \in \mathcal{B}^n$ define $u_{\alpha} = (F(B_0), F(B_1), ...)$ and

 $B_n(\alpha) = \{x \in Q \, | \, \varphi(i\tau, x, u_\alpha) \in B_i \text{ for } i = 0, \ldots, n-1 \}.$

These sets again form an open cover of Q ,

$$
\mathfrak{B}^{(n)}=\{B_n(\alpha)\,|\alpha\in\mathcal{B}^n\}.
$$

The invariance entropy of $\mathcal C$ is

$$
h(C, Q) := \lim_{n \to \infty} \frac{1}{n} \log N(\mathfrak{B}^{(n)})
$$

and the **topological invariance entropy** of Q is

$$
h_{inv}(Q):=\inf_{\mathcal{C}}h(\mathcal{C},Q).
$$

Fritz Colonius (Universität Augsburg) [Invariance Entropy](#page--1-0) June 17 / 35

Alternative definition

Let K be a subset of $Q \subset M$ suh that for all $x \in K$ there is $u \in U$ with $\varphi(n, x, u) \in Q$ for all $n \in \mathbb{N}$. A subset $S \subset \mathcal{U}$ is called (τ, K, Q) -spanning, if for all $x \in K$ there is $u \in S$ such that for all $j = 1, \ldots, \tau$

$$
\varphi(t,x,u)\in\mathrm{int}Q\;(\text{or}\;\varphi(t,x,u)\in Q).
$$

Thus U is (τ, K, Q) -spanning for all $\tau \in \mathbb{N}$. Let $r_{inv}(\tau, K, Q)$ be the minimal number of elements in a (τ, K, Q) -spanning set. The invariance entropy of (K, Q) is

$$
h_{inv}(K,Q) := \lim_{\tau \to \infty} \log r_{inv}(\tau, K, Q).
$$

イロト イ何 トイミト イミト ニヨー つなべ

Alternative definition

Let K be a subset of $Q \subset M$ suh that for all $x \in K$ there is $u \in U$ with $\varphi(n, x, u) \in Q$ for all $n \in \mathbb{N}$. A subset $S \subset \mathcal{U}$ is called (τ, K, Q) -spanning, if for all $x \in K$ there is $u \in S$ such that for all $j = 1, \ldots, \tau$

$$
\varphi(t,x,u)\in\mathrm{int}Q\;(\text{or}\;\varphi(t,x,u)\in Q).
$$

Thus U is (τ, K, Q) -spanning for all $\tau \in \mathbb{N}$. Let $r_{inv}(\tau, K, Q)$ be the minimal number of elements in a (τ, K, Q) -spanning set. The invariance entropy of (K, Q) is

$$
h_{inv}(K,Q):=\lim_{\tau\to\infty}\log r_{inv}(\tau,K,Q).
$$

Theorem (FC, Kawan, Nair (2013)). For $K = Q$ one has

$$
h_{inv}(Q)=h_{inv}(Q,Q).
$$

Fritz Colonius (Universität Augsburg) [Invariance Entropy](#page--1-0) January 21, 2019 19 / 35

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The control problem

Explanation

System Deterministic, discrete or continuous time Coder Encodes the state by a symbol from a (time-dependent) alphabet at discrete times $k\tau$, $k = 0, 1, 2, \ldots$ Controller Generates open-loop controls on a finite time interval $[0, \tau]$

Relation to coder-controllers and data rates

A **coder-controller** has the form $\mathcal{H} = (S, \gamma, \delta, \tau)$ where

 $-S = (S_k)_{k \in \mathbb{N}}$ denotes finite coding alphabets

- the coder mapping ${\gamma}_k: M^{k+1} \to S_k$ associates to the present and past states the symbol $s_k \in S_k$

- at time $k\tau$ the controller mapping is $\delta_k : S_0 \times \cdots \times S_k \to \Omega^{\tau}$.

The transmission data rate is

$$
R(\mathcal{H}) = \liminf_{k \to \infty} \frac{1}{k\tau} \sum_{j=0}^{k-1} \log \#S_j.
$$

Relation to coder-controllers and data rates

A **coder-controller** has the form $\mathcal{H} = (S, \gamma, \delta, \tau)$ where

 $-S = (S_k)_{k \in \mathbb{N}}$ denotes finite coding alphabets

- the coder mapping ${\gamma}_k: M^{k+1} \to S_k$ associates to the present and past states the symbol $s_k \in S_k$

- at time $k\tau$ the controller mapping is $\delta_k : S_0 \times \cdots \times S_k \to \Omega^{\tau}$.

The transmission data rate is

$$
R(\mathcal{H}) = \liminf_{k \to \infty} \frac{1}{k\tau} \sum_{j=0}^{k-1} \log \#S_j.
$$

H renders Q invariant if for every $x_0 \in Q$ the sequence

$$
x_{k+1} := \varphi(\tau, x_k, u_k), k \in \mathbb{N},
$$

with

$$
u_k = \delta_k(\gamma_0(x_0), \gamma_1(x_0, x_1), \ldots, \gamma_k(x_0, x_1, \ldots, x_k)) \in \Omega^{\tau}
$$

satisfies

 $\varphi(i, x_k, u_k) \in Q$ for [all](#page-21-0) $i \in \{1, \ldots, \tau\}$ a[nd](#page-22-0) all $k \in \mathbb{N}$ $k \in \mathbb{N}$ $k \in \mathbb{N}$ [.](#page--1-0) $\exists \, \cdot \cdot \cdot \cdot \equiv \cdot \cdot \cdot \cdot \cdot \cdot$
niversität Augsburg) linvariance Entropy January [2](#page--1-0)1, 2019 21 / 35 Fritz Colonius (Universität Augsburg) [Invariance Entropy](#page--1-0) January 21, 2019 21 / 35

Theorem. For a compact and controlled invariant set Q it holds that

$$
h_{inv}(Q)=\inf R(\mathcal{H}),
$$

where the infimum is taken over all coder-controllers H that render Q invariant.

 \equiv Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Comments and some further results

- Let $K_1, K_2 \subset D$ be compact with $intK_i \neq \emptyset$ in a control set D. Then $h_{inv}(K_1, Q) = h_{inv}(K_2, Q)$.

- For linear control systems in \mathbb{R}^d

$$
x_{n+1}=Ax_n+Bu_n, u_n\in \Omega\subset \mathbb{R}^m,
$$

with int $K \neq \emptyset$ and (A, B) controllable, A hyperbolic and Ω a compact nbhd of 0, one has for K contained in the unique control set D

$$
h_{inv}(K,D)=\sum_{\lambda\in\sigma(A)}\max(0,\log|\lambda|).
$$

Comments and some further results

- Let $K_1, K_2 \subset D$ be compact with $intK_i \neq \emptyset$ in a control set D. Then $h_{inv}(K_1, Q) = h_{inv}(K_2, Q)$.

- For linear control systems in \mathbb{R}^d

$$
x_{n+1}=Ax_n+Bu_n, u_n\in \Omega\subset \mathbb{R}^m,
$$

with int $K \neq \emptyset$ and (A, B) controllable, A hyperbolic and Ω a compact nbhd of 0, one has for K contained in the unique control set D

$$
h_{inv}(K,D)=\sum_{\lambda\in\sigma(A)}\max(0,\log|\lambda|).
$$

- hyperbolicity of the control flow on $\mathcal{U} \times Q$ gives a formula in terms of Lyapunov exponents for periodic solutions

Kawan (2014),

- also for linear control systems on Lie groups

da Silva [\(20](#page-23-0)1[4\)](#page-25-0)

Fritz Colonius (Universität Augsburg) [Invariance Entropy](#page--1-0) January 21, 2019 24 / 35

DA SILVA AND KAWAN, DISC. CONT. DYNAM. SYST. (2016)

Theorem. Consider a uniformly hyperbolic chain control set E with nonempty interior of a control-affine continuous time system. Assume that (i) the Lie Algebra Rank Condition holds on $intE$ and (ii) for each $u \in \mathcal{U}$ there exists a unique $x \in E$ with $(u, x) \in \mathcal{E}$, i.e., \mathcal{E} is a graph over \mathcal{U} .

Then E is the closure of a control set D and for every compact set $K \subset D$ with positive volume,

$$
h_{inv}(K, D) = \inf_{(u,x)\in \mathcal{E}} \limsup_{t\to\infty} \log J^+ \varphi_{t,u}(x)
$$

where $J^+\varphi_{t,u}(x)$ is the unstable determinant of $d\varphi_{t,u}(x).$

Invariance pressure

Introduce a potential $f \in C(\Omega, \mathbb{R})$ for the control values. Let $K \subset Q$ be compact s.t. $\forall x \in K \exists u \in \mathcal{U} : \varphi(\mathbb{R}_+, x, u) \subset Q$. A set $S \subset \mathcal{U}$ is a (τ, K, Q) -spanning set if

$$
\forall x \in K \; \exists u \in S : \varphi([0, \tau], x, \mu) \subset Q.
$$

With $(S_{\tau}f)(u) := \int_0^{\tau} f(u(t))dt$ let

$$
a_{\tau}(f, K, Q) := \inf \{ \sum_{u \in S} e^{(S_{\tau}f)(u)}; S \text{ is } (\tau, K, Q)\text{-spanning} \}.
$$

The invariance pressure is

$$
P_{inv}(f, K, Q) = \limsup_{\tau \to \infty} \frac{1}{\tau} \log a_{\tau}(f, K, Q).
$$

If $f \equiv 0$, $\sum_{u \in S} e^{(S_{\tau}f)(u)} = \#S$. Then this reduces to a known characterization of the invariance entropy.

Fritz Colonius (Universität Augsburg) [Invariance Entropy](#page--1-0) January 21, 2019 26 / 35

Consider a linear control systems in **R**^d

$$
\dot{x}=Ax+Bu, u(t)\in \Omega\subset \mathbb{R}^m,
$$

with a compact neighborhood Ω of 0 and assume (A, B) controllable, A hyperbolic.

For $K \subset D$, the unique control set with $\text{int}D \neq \emptyset$, one has:

$$
P_{inv}(f, K, D) \leq \sum_{\lambda \in \sigma(A)} \max(0, \text{Re }\lambda) + \inf_{T, u(\cdot)} \frac{1}{T} \int_0^T f(u(s)) ds,
$$

where the infimum is taken over all $T > 0$ and all T-periodic controls $u(\cdot)$ with values in a compact subset of int Ω and a T-periodic $x(\cdot) \subset \text{int}D$.

For **dynamical systems** it is well known that the entropy is already determined on the recurrent set.

What about invariance entropy?

For **control systems** recurrence properties are replaced by controllability properties.

Here subsets of complete approximate controllability (in Q) are of relevance, called **control sets**.

 \equiv \curvearrowleft \curvearrowright

イロト イ母 トイラト イヨト

W-control sets

For a **open** subset W of the state space let $\varphi_W(n, x, u)$ be the trajectories within W and define the reachable and controllable set within W by

$$
\mathcal{R}_W(x) = \{ \varphi_W(n, x, u) \text{ for some } n \in \mathbb{N} \text{ and } u \in \mathcal{U} \}
$$

$$
\mathcal{C}_W(x) = \{ y \in W \mid \varphi_W(n, y, u) = x \text{ for some } n \in \mathbb{N} \text{ and } u \in \mathcal{U} \}.
$$

 \equiv \curvearrowleft \curvearrowright \curvearrowright

イロト イ母 トイラト イヨト

W-control sets

For a **open** subset W of the state space let $\varphi_W(n, x, u)$ be the trajectories within W and define the reachable and controllable set within W by

$$
\mathcal{R}_W(x) = \{ \varphi_W(n, x, u) \text{ for some } n \in \mathbb{N} \text{ and } u \in \mathcal{U} \}
$$

$$
\mathcal{C}_W(x) = \{ y \in W \mid \varphi_W(n, y, u) = x \text{ for some } n \in \mathbb{N} \text{ and } u \in \mathcal{U} \}.
$$

Definition. A set D is called an **invariant W-control set** if (i)

$$
\overline{D}^W = \overline{\mathcal{R}_W(x)}^W \text{ for all } x \in D,
$$

where the closure is taken with respect to W and (ii) there is $x \in D$ with $x \in \text{int}C_W(x)$.

Remark. Condition (ii) is crucial for discrete-time systems.

 \equiv \curvearrowleft \curvearrowright

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Existence of invariant W-control sets

Theorem. Assume

- the state space M is a connected analytic Riemannian manifold
- $W \subset M$ is connected open and relatively compact
- the control range $\Omega \subset \overline{\text{int}\Omega} \subset \mathbb{R}^m$ and $f : M \times \Omega \to M$ is analytic

 $-\Omega_{sub} := {\omega \in \Omega | f(\cdot, \omega)}$ is submersive is the complement of a proper analytic subset.

Then the following are equivalent:

(i) There are at least one and at most finitely many *invariant W-control* sets D and for every $x \in W$ there is D with

$$
\mathcal{R}_W(x) \cap D \neq \emptyset.
$$

(ii) There is a compact set $F \subset W$ with

$$
F \cap \overline{\mathcal{R}_W(x)} \neq \emptyset \text{ for all } x \in W.
$$

Albertini and Sontag (1993), Wirth (1998), Patrão and San Martin (2007) イロト イ母ト イヨト イヨト \equiv \cap a \sim

Theorem. Under the assumptions of (i) in the previous theorem let $Q := \overline{W} \subset M$ and consider a compact $K \subset Q$. Assume

(i) for every relatively invariant W-control set C_i there is a compact $K_i \subset K \cap C_i$ with int $K_i \neq \emptyset$.

(i) for the finitely many invariant W-control sets D_i

$$
f(\bigcup_i \overline{D_i}, \Omega) \cap (\partial Q \setminus \bigcup_i \overline{D_i}) = \emptyset.
$$

Then

$$
h_{inv}(K,Q)=\max_i h_{inv}(K_i,C_i).
$$

where the maximum is taken over all relatively invariant W -control sets \mathcal{C}_i .

Remark. In the continuous-time case a similar result has been shown in FC/Lettau (2016).

$$
f_{\alpha}(x,\omega)=x+\sigma\cos(4\pi x)+A\omega+\alpha \mod 1.
$$

Two W-control sets D_1 and D_2 (to the right) in $W = (0.1, 0.7)$. The i[n](#page-32-0)varianc[e](#page-34-0) entropies on $Q = [0.1, 0.7]$ $Q = [0.1, 0.7]$ $Q = [0.1, 0.7]$ and on $\overline{D_2}$ $\overline{D_2}$ $\overline{D_2}$ c[oi](#page-34-0)n[cid](#page-33-0)e. OQ - 4 n⊡ \equiv \equiv E

Classical entropy of dynamical systems describes the total information generated by the system topologically or with respect to an *invariant* measure.

In contrast, entropy for control systems describes the **minimal** information for invariance in a topological context.

The data rate theorem relates the topological invariance entropy to the minimal bit rate needed for invariance.

In a similar vein, minimal bit rates for other control problems, e.g. stabilization or state estimation, can be determined.

There are also several efforts to develop a measure-theoretic notion of invariance entropy.

Some references

F. Colonius, J. Cossich, A. Santana, Invariance pressure of control sets, SIAM J. Control Optim. 56 (2018), pp. 4130-4147.

F. Colonius, Invariance entropy, quasi-stationary measures and control sets. Discrete and Continuous Dynamical Systems (DCDS-A) 38(4) (2018), 2093-2123.

F. Colonius, R. Lettau, Relative controllability properties, IMA Journal of Mathematical Control and Information 33 (2016), 701-722.

A. da Silva and C. Kawan, Invariance entropy of hyperbolic control sets, Discrete and Continuous Dynamical Systems (DCDS-A), 36 (2016), 97-136.

G. Nair, R.J. Evans, I. Mareels, and W. Moran, Topological feedback entropy and nonlinear stabilization, IEEE Transactions on Automatic Control 49 (2004), 1585-1597.

Xingfu Zhong and Yu Huang, Invariance Pressure Dimensions for Control Systems, Journal of Dynamics and Differential Equations (2018).

Fritz Colonius (Universität Augsburg) [Invariance Entropy](#page--1-0) January 21, 2019 35 / 35