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Goal

Determine fundamental limitations in control

Here: Describe the �information�needed to make a subset invariant for a
control system

Classically, entropy is used in dynamical systems theory in order to
describe the information generated by the systems and to classify them.

A recent survey on various de�nitions and application areas of entropy is
Amigó et al. DCDS B (2015).

Control systems:

Delchamps (1990) (ergodic theory for quantized feedback)

Topological versions have been analyzed, in particular, by

Nair, Evans, Mareels and Moran (2004)

Kawan, Springer LNM Vol. 2089 (2013)
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Control systems

We consider control system in discrete time given by

xn+1 = f (xn, un), n 2 N = f0, 1, ...g,

where f : M �Ω ! M is continuous and M and Ω are metric spaces.
The solution with x0 = x and u = (un) 2 U := ΩN is denoted by
ϕ(n, x , u), n 2 N.

We assume that for every x 2 Q � M there is u(x) 2 Ω with
f (x , u(x)) 2 Q.
What is the �information�necessary to keep the system in Q?

Motivation: Suppose that the present state xn of the system is measured.
If the controller has complete information about the present state, it can
adjust a feedback control u(x) appropriately. However, if the measurement
is sent to the controller via a (noiseless) digital channel with bounded data
rate it is of interest to determine the minimal data rate needed to make Q
invariant. More abstractly: What is the minimal average information
needed to make Q invariant?
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Contents

This talk consists of three parts:

- Some motivation from classical entropy of dynamical systems

- Topological invariance entropy for control systems

- coder-controllers and minimal bit rates

- Relations to controllability properties
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Topological entropy for dynamical systems

Let T : X ! X be a continuous map on a compact metric space.
Suppose B is a �nite open cover of X , i.e., the sets in B are open, their
union is X .
For an itinerary α = (B0,B1, . . . ,Bn�1) 2 Bn let
Bn(α) = fx 2 X

��T j (x) 2 Bj for j = 0, . . . , n� 1g = B0 \ � � � \T�(n�1)Bn�1.
They again form an open cover of X ,

B(n) = fBn(α) jα 2 Bn g.
Denote the minimal number of elements of a subcover by N(B(n)).
Then the entropy of B is given by

h(B,T ) = lim
n!∞

1
n
logN(B(n))

and the topological entropy of T is

htop(T ) = supB h(B,T ).
Adler, Konheim, McAndrew (1965)
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A classical example

Consider the logistic map on the interval X = [0, 1] given by

F4(x) = 4x(1� x), x 2 [0, 1].

The topological entropy of F4 is

htop(F4) = log2 2 = 1 > 0.

Hence this is a chaotic map.
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Metric entropy for dynamical systems

For a probability measure µ and a partition P of X the Shannon entropy
is

Hµ(P) = � ∑
P2P

µ(P) log µ(P).

Let µ be invariant for a map T on X , i.e., µ(T�1B) = µ(B) for all
B � X .
For an itinerary α = (P0,P1, . . . ,Pn�1) 2 Pn let

Pn(α) = fx 2 X
��T j (x) 2 Pj for all j g = P0 \T�1P1 \ � � � \T�(n�1)Pn�1.

They yield a partition P (n) = fPn(α) jα 2 Pn g and

hµ(P) := lim
n!∞

1
n
Hµ

�
P (n)

�
.

The Kolmogorov-Sinai entropy of T is

hµ(T ) = sup
P
hµ(P).
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The logistic map again

Recall
F4(x) = 4x(1� x) on [0, 1].

A (trivial) invariant measure is µ = δ0 with entropy hδ0(F4) = 0.
A nontrivial invariant measure is given by its density (with respect to
Lebesgue measure)

1

π
p
x(1� x)

, x 2 [0, 1].

The corresponding metric entropy is

hµ(F4) = log2 2 = 1

(hence equal to the topological entropy).
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Comments

The Variational Principle states that

sup
µ
hµ(T ) = htop(T )

and invariant measures µ with maximal entropy, i.e., hµ(T ) = htop(T ),
are of special relevance.

For smoth maps, the entropy can often be characterized by the positive
Lyapunov exponents.
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Invariance entropy for control systems

Describe the minimal information to make a compact Q � M invariant
for

xn+1 = f (xn, un), un 2 Ω,

with solutions ϕ(n, x0, u), n 2 N, in M.

Here this will be done in a topological framework.
Topological invariance entropy is based on itineraries in Q corresponding
to invariant open covers of Q. They are constructed by feedbacks
keeping the system in Q and replace the open covers.

Observe: This is not directly related to the entropy of the uncontrolled
system which may behave very wildly in Q, while Q itself may be
invariant. Hence the entropy of the dynamical system may be positive
while the invariance problem is trivial.
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Example

fα(x ,ω) = x + σ cos(2πx) + Aω+ α mod 1, ω 2 Ω = [�1, 1].
With A = 0.05, σ = 0.1, α = 0.08 consider the set Q = [0.2, 0.5].
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Topological invariance entropy for control systems

An invariant open cover C = (,B,F ) is given by τ 2 N, an open cover
B of Q and F : B ! Ωτ with

ϕ(j ,B,F (B)) � intQ for j = 1, . . . , τ and B 2 B.
For a C-itinerary α = (B0, ...,Bn�1) 2 Bn de�ne uα = (F (B0),F (B1), ...)
and

Bn(α) = fx 2 Q jϕ(iτ, x , uα) 2 Bi for i = 0, . . . , n� 1g.
These sets again form an open cover of Q,

B(n) = fBn(α) jα 2 Bn g.
The invariance entropy of Cτ is

h(C,Q) = lim
n!∞

1
n
logN(B(n) jQ ))

and the topological invariance entropy of Q is

hinv (Q) = infC
h(C,Q)
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Alternative de�nition

Let K be a subset of Q � M suh that for all x 2 K there is u 2 U with
ϕ(n, x , u) 2 Q for all n 2 N.
A subset S � U is called (τ,K ,Q)-spanning, if for all x 2 K there is
u 2 S such that for all j = 1, . . . , τ

ϕ(t, x , u) 2 intQ (or ϕ(t, x , u) 2 Q).

Thus U is (τ,K ,Q)-spanning for all τ 2 N.
Let rinv (τ,K ,Q) be the minimal number of elements in a
(τ,K ,Q)-spanning set.
The invariance entropy of (K ,Q) is

hinv (K ,Q) := lim
τ!∞

log rinv (τ,K ,Q).

Theorem (FC, Kawan, Nair (2013)). For K = Q one has

hinv (Q) = hinv (Q,Q).
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Invariance entropy Entropy of nonautonomous dynamical systems

The setup

The control problem

System

Coder

noiseless digital channel

Controller

R bits/sec

Explanation

System Deterministic, discrete or
continuous time
Coder Encodes the state by a
symbol from a (time-dependent)
alphabet at discrete times kτ ,
k = 0, 1, 2, . . .
Controller Generates open-loop
controls on a finite time interval
[0, τ ]

Control objective

Invariance of a compact subset of the state space



Relation to coder-controllers and data rates

A coder-controller has the form H = (S ,γ, δ, τ) where
- S = (Sk )k2N denotes �nite coding alphabets
- the coder mapping γk : Mk+1 ! Sk associates to the present and past
states the symbol sk 2 Sk
- at time kτ the controller mapping is δk : S0 � � � � � Sk ! Ωτ.
The transmission data rate is

R(H) = lim inf
k!∞

1
kτ

k�1
∑
j=0

log#Sj .

H renders Q invariant if for every x0 2 Q the sequence

xk+1 := ϕ(τ, xk , uk ), k 2 N,

with

uk = δk (γ0(x0),γ1(x0, x1), . . . ,γk (x0, x1, . . . , xk )) 2 Ωτ

satis�es

ϕ(i , xk , uk ) 2 Q for all i 2 f1, . . . , τg and all k 2 N.
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The data rate theorem

Theorem. For a compact and controlled invariant set Q it holds that

hinv (Q) = inf R(H),

where the in�mum is taken over all coder-controllers H that render Q
invariant.
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Comments and some further results

- Let K1,K2 � D be compact with intKi 6= ? in a control set D. Then
hinv (K1,Q) = hinv (K2,Q).

- For linear control systems in Rd

xn+1 = Axn + Bun, un 2 Ω � Rm ,

with intK 6= ∅ and (A,B) controllable, A hyperbolic and Ω a compact
nbhd of 0, one has for K contained in the unique control set D

hinv (K ,D) = ∑λ2σ(A)max(0, log jλj).

- hyperbolicity of the control �ow on U �Q gives a formula in terms of
Lyapunov exponents (periodic solutions are enough)

Kawan (2014)

- also for linear control systems on Lie groups
da Silva (2014)
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Comments and some further results

Da Silva and Kawan, Disc. Cont. Dynam. Syst. (2016)

Theorem. Consider a uniformly hyperbolic chain control set E with
nonempty interior of a control-a¢ ne continuous time system. Assume that
(i) the Lie Algebra Rank Condition holds on intE and
(ii) for each u 2 U there exists a unique x 2 E with (u, x) 2 E , i.e., E is a
graph over U .
Then E is the closure of a control set D and for every compact set K � D
with positive volume,

hinv (K ,D) = inf
(u,x )2E

lim sup
t!∞

log J+ϕt ,u(x)

where J+ϕt ,u(x) is the unstable determinant of dϕt ,u(x).
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Invariance pressure

Introduce a potential f 2 C (Ω,R) for the control values.
Let K � Q be compact s.t. 8x 2 K 9u 2 U : ϕ(R+, x , u) � Q.
A set S � U is a (τ,K ,Q)-spanning set if

8x 2 K 9u 2 S : ϕ([0, τ], x , , u) � Q.

With (Sτf )(u) :=
R τ
0 f (u(t))dt let

aτ(f ,K ,Q) := inff∑
u2S

e(Sτf )(u); S is (τ,K ,Q)-spanning}.

The invariance pressure is

Pinv (f ,K ,Q) = lim sup
τ!∞

1
τ
log aτ(f ,K ,Q).

If f � 0, ∑u2S e
(Sτf )(u) = #S . Then this reduces to a known

characterization of the invariance entropy.
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Invariance pressure for linear control systems

Consider a linear control systems in Rd

ẋ = Ax + Bu, u(t) 2 Ω � Rm ,

with a compact neighborhood Ω of 0 and assume (A,B) controllable, A
hyperbolic.
For K � D, the unique control set with intD 6= ?, one has:

Pinv (f ,K ,D) � ∑λ2σ(A)max(0,Re λ) + infT ,u(�)
1
T

Z T

0
f (u(s))ds,

where the in�mum is taken over all T > 0 and all T -periodic controls u(�)
with values in a compact subset of intΩ and a T -periodic x(�) � intD.
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Invariance Entropy and Controllability Properties

For dynamical systems it is well known that the entropy is already
determined on the recurrent set.

What about invariance entropy?

For control systems recurrence properties are replaced by controllability
properties.

Here subsets of complete approximate controllability (in Q) are of
relevance, called control sets.
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W-control sets

For a open subset W of the state space let ϕW (n, x , u) be the trajectories
within W and de�ne the reachable and controllable set within W by

RW (x) = fϕW (n, x , u) for some n 2 N and u 2 Ug
CW (x) = fy 2 W jϕW (n, y , u) = x for some n 2 N and u 2 U g.

De�nition. A set D is called an invariant W -control set if
(i)

D
W
= RW (x)

W
for all x 2 D,

where the closure is taken with respect to W and
(ii) there is x 2 D with x 2 intCW (x).

Remark. Condition (ii) is crucial for discrete-time systems.
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Existence of invariant W-control sets

Theorem. Assume
- the state space M is a connected analytic Riemannian manifold
- W � M is connected open and relatively compact
- the control range Ω � intΩ � Rm and f : M �Ω ! M is analytic
- Ωsub := fω 2 Ω jf (�,ω) is submersiveg is the complement of a proper
analytic subset.

Then the following are equivalent:

(i) There are at least one and at most �nitely many invariant W-control
sets D and for every x 2 W there is D with

RW (x) \D 6= ∅.

(ii) There is a compact set F � W with

F \RW (x) 6= ∅ for all x 2 W .

Albertini and Sontag (1993), Wirth (1998), Patrão and San Martin (2007)
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Invariance entropy and W-control sets

Theorem. Under the assumptions of (i) in the previous theorem let
Q := W � M and consider a compact K � Q. Assume
(i) for every relatively invariant W -control set Ci there is a compact
Ki � K \ Ci with intKi 6= ?.
(i) for the �nitely many invariant W -control sets Di

f (
S
i Di ,Ω) \ (∂Q n

S
i Di ) = ∅.

Then

hinv (K ,Q) = max
i
hinv (Ki ,Ci ).

where the maximum is taken over all relatively invariant W -control sets Ci .

Remark. In the continuous-time case a similar result has been shown in
FC/Lettau (2016).
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fα(x ,ω) = x + σ cos(4πx) + Aω+ α mod 1.

Two W -control sets D1 and D2 (to the right) in W = (0.1, 0.7). The
invariance entropies on Q = [0.1, 0.7] and on D2 coincide.
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Final remarks

Classical entropy of dynamical systems describes the total information
generated by the system topologically or with respect to an invariant
measure.

In contrast, entropy for control systems describes the minimal
information for invariance in a topological context.

The data rate theorem relates the topological invariance entropy to the
minimal bit rate needed for invariance.

In a similar vein, minimal bit rates for other control problems, e.g.
stabilization or state estimation, can be determined.

There are also several e¤orts to develop a measure-theoretic notion of
invariance entropy.
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