University of Teheran January 2019

Control under Communication Constraints and Invariance Entropy

Fritz Colonius Universität Augsburg

Fritz Colonius (Universität Augsburg)

Invariance Entropy

January 21, 2019 2 / 35

イロト イポト イヨト イヨト

= nar

Determine **fundamental limitations** in control

Here: Describe the "information" needed to make a subset invariant for a control system

Classically, entropy is used in dynamical systems theory in order to describe the information generated by the systems and to classify them.

A recent survey on various definitions and application areas of **entropy** is Amigó et al. DCDS B (2015).

Control systems:

Delchamps (1990) (ergodic theory for quantized feedback)

Topological versions have been analyzed, in particular, by

Nair, Evans, Mareels and Moran (2004) Kawan, Springer LNM Vol. 2089 (2013)

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Control systems

We consider control system in discrete time given by

$$x_{n+1} = f(x_n, u_n), n \in \mathbb{N} = \{0, 1, ...\},\$$

where $f: M \times \Omega \to M$ is continuous and M and Ω are metric spaces. The solution with $x_0 = x$ and $u = (u_n) \in \mathcal{U} := \Omega^N$ is denoted by $\varphi(n, x, u), n \in \mathbb{N}$.

We assume that for every $x \in Q \subset M$ there is $u(x) \in \Omega$ with $f(x, u(x)) \in Q$.

What is the "information" necessary to keep the system in Q?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

Control systems

We consider control system in discrete time given by

$$x_{n+1} = f(x_n, u_n), n \in \mathbb{N} = \{0, 1, ...\},\$$

where $f: M \times \Omega \to M$ is continuous and M and Ω are metric spaces. The solution with $x_0 = x$ and $u = (u_n) \in \mathcal{U} := \Omega^N$ is denoted by $\varphi(n, x, u), n \in \mathbb{N}$.

We assume that for every $x \in Q \subset M$ there is $u(x) \in \Omega$ with $f(x, u(x)) \in Q$. What is the "information" respective to been the system in Q.

What is the "information" necessary to keep the system in Q?

Motivation: Suppose that the present state x_n of the system is measured. If the controller has complete information about the present state, it can adjust a feedback control u(x) appropriately. However, if the measurement is sent to the controller via a (noiseless) digital channel with bounded data rate it is of interest to determine the minimal data rate needed to make Qinvariant. More abstractly: What is the minimal average information needed to make Q invariant? This talk consists of three parts:

- Some motivation from classical entropy of dynamical systems
- Topological invariance entropy for control systems
- coder-controllers and minimal bit rates
- Relations to controllability properties

200

Image: A matrix of the second seco

Topological entropy for dynamical systems

Let $T : X \to X$ be a continuous map on a compact metric space. Suppose \mathcal{B} is a finite open cover of X, i.e., the sets in \mathcal{B} are open, their union is X.

For an **itinerary** $\alpha = (B_0, B_1, \dots, B_{n-1}) \in \mathcal{B}^n$ let

 $\mathcal{B}_n(\alpha) = \{x \in X \mid T^j(x) \in B_j \text{ for } j = 0, \dots, n-1\} = B_0 \cap \dots \cap T^{-(n-1)}B_n$

They again form an open cover of X,

$$\mathfrak{B}^{(n)} = \{ \mathcal{B}_n(\alpha) \mid \alpha \in \mathcal{B}^n \}.$$

Denote the minimal number of elements of a subcover by $N(\mathfrak{B}^{(n)})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Topological entropy for dynamical systems

Let $T : X \to X$ be a continuous map on a compact metric space. Suppose \mathcal{B} is a finite open cover of X, i.e., the sets in \mathcal{B} are open, their union is X.

For an itinerary $\alpha = (B_0, B_1, \dots, B_{n-1}) \in \mathcal{B}^n$ let

 $\mathcal{B}_n(\alpha) = \{x \in X \mid T^j(x) \in B_j \text{ for } j = 0, \dots, n-1\} = B_0 \cap \dots \cap T^{-(n-1)}B_n$

They again form an open cover of X,

$$\mathfrak{B}^{(n)} = \{ \mathcal{B}_n(\alpha) \mid \alpha \in \mathcal{B}^n \}.$$

Denote the minimal number of elements of a subcover by $N(\mathfrak{B}^{(n)})$. Then the entropy of \mathcal{B} is given by

$$h(\mathcal{B}, T) = \lim_{n \to \infty} \frac{1}{n} \log N(\mathfrak{B}^{(n)})$$

and the **topological entropy** of T is

$$h_{top}(T) = \sup_{\mathcal{B}} h(\mathcal{B}, T).$$

Adler, Konheim, McAndrew (1965)

Fritz Colonius (Universität Augsburg)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Consider the **logistic map** on the interval X = [0, 1] given by

$$F_4(x) = 4x(1-x), x \in [0, 1].$$

The topological entropy of F_4 is

$$h_{top}(F_4) = \log_2 2 = 1 > 0.$$

Hence this is a **chaotic map**.

イロト イロト イヨト イ

Metric entropy for dynamical systems

For a probability measure μ and a partition \mathcal{P} of X the **Shannon entropy** is

$$H_{\mu}(\mathcal{P}) = -\sum_{\mathcal{P}\in\mathcal{P}} \mu(\mathcal{P}) \log \mu(\mathcal{P}).$$

Let μ be invariant for a map T on X, i.e., $\mu(T^{-1}B) = \mu(B)$ for all $B \subset X$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

Metric entropy for dynamical systems

For a probability measure μ and a partition \mathcal{P} of X the **Shannon entropy** is

$$H_{\mu}(\mathcal{P}) = -\sum_{\mathcal{P}\in\mathcal{P}} \mu(\mathcal{P}) \log \mu(\mathcal{P}).$$

Let μ be invariant for a map T on X, i.e., $\mu(T^{-1}B) = \mu(B)$ for all $B \subset X$.

For an **itinerary** $\alpha = (P_0, P_1, ..., P_{n-1}) \in \mathcal{P}^n$ let

 $P_n(\alpha) = \{ x \in X \mid T^j(x) \in P_j \text{ for all } j \} = P_0 \cap T^{-1} P_1 \cap \dots \cap T^{-(n-1)} P_{n-1}.$

They yield a partition $\mathcal{P}^{(n)} = \{ \mathcal{P}_n(\alpha) \, | \alpha \in \mathcal{P}^n \}$ and

$$h_{\mu}(\mathcal{P}, T) := \lim_{n\to\infty} \frac{1}{n} H_{\mu}\left(\mathcal{P}^{(n)}\right).$$

The Kolmogorov-Sinai entropy of T is

$$h_{\mu}(T) = \sup_{\mathcal{P}} h_{\mu}(\mathcal{P}, T).$$

Fritz Colonius (Universität Augsburg)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

The logistic map again

Recall

$$F_4(x) = 4x(1-x)$$
 on $[0,1]$.

A (trivial) invariant measure is $\mu = \delta_0$ with entropy $h_{\delta_0}(F_4) = 0$. A nontrivial invariant measure is given by its density (with respect to Lebesgue measure)

$$\frac{1}{\pi\sqrt{x(1-x)}}, x \in [0,1].$$

The corresponding metric entropy is

$$h_\mu(F_4) = \log_2 2 = 1$$

(hence equal to the topological entropy).

イロト イポト イヨト イヨト

The Variational Principle states that

$$\sup_{\mu} h_{\mu}(T) = h_{top}(T)$$

and invariant measures μ with maximal entropy, i.e., $h_{\mu}(T) = h_{top}(T)$, are of special relevance.

For smoth maps, the entropy can often be characterized by the positive **Lyapunov exponents**.

= nac

イロト イポト イヨト イヨト

Describe the minimal information to make a compact $Q \subset M$ invariant for

$$x_{n+1}=f(x_n,u_n), u_n\in\Omega,$$

with solutions $\varphi(n, x_0, u)$, $n \in \mathbb{N}$, in M.

Here this will be done in a topological framework.

Topological invariance entropy is based on **itineraries in Q** corresponding to **invariant open covers** of Q. They are constructed by feedbacks keeping the system in Q and replace the open covers.

Observe: This is not directly related to the entropy of the uncontrolled system which may behave very wildly in Q, while Q itself may be invariant. Hence the entropy of the dynamical system may be positive while the invariance problem is trivial.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Example

 $f_{\alpha}(x,\omega) = x + \sigma \cos(2\pi x) + A\omega + \alpha \mod 1, \ \omega \in \Omega = [-1,1].$ With $A = 0.05, \sigma = 0.1, \alpha = 0.08$ consider the set Q = [0.2, 0.5].

Topological invariance entropy for control systems

An invariant open cover C = (, B, F) is given by $\tau \in \mathbb{N}$, an open cover \mathcal{B} of Q and $F : \mathcal{B} \to \Omega^{\tau}$ with

 $\varphi(j, B, F(B)) \subset \operatorname{int} Q$ for $j = 1, \ldots, \tau$ and $B \in \mathcal{B}$.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Topological invariance entropy for control systems

An **invariant open cover** $C = (\tau, \mathcal{B}, F)$ is given by $\tau \in \mathbb{N}$, an open cover \mathcal{B} of Q and $F : \mathcal{B} \to \Omega^{\tau}$ with

$$\varphi(j, B, F(B)) \subset \operatorname{int} Q$$
 for $j = 1, \dots, \tau$ and $B \in \mathcal{B}$.

For a *C*-itinerary $\alpha = (B_0, ..., B_{n-1}) \in \mathcal{B}^n$ define $u_{\alpha} = (F(B_0), F(B_1), ...)$ and

 $B_n(\alpha) = \{ x \in Q \mid \varphi(i\tau, x, u_\alpha) \in B_i \text{ for } i = 0, \dots, n-1 \}.$

These sets again form an open cover of Q,

$$\mathfrak{B}^{(n)} = \{ B_n(\alpha) \mid \alpha \in \mathcal{B}^n \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Topological invariance entropy for control systems

An **invariant open cover** $C = (\tau, \mathcal{B}, F)$ is given by $\tau \in \mathbb{N}$, an open cover \mathcal{B} of Q and $F : \mathcal{B} \to \Omega^{\tau}$ with

$$\varphi(j, B, F(B)) \subset \operatorname{int} Q$$
 for $j = 1, \dots, \tau$ and $B \in \mathcal{B}$.

For a C-itinerary $\alpha = (B_0, ..., B_{n-1}) \in \mathcal{B}^n$ define $u_{\alpha} = (F(B_0), F(B_1), ...)$ and

 $B_n(\alpha) = \{ x \in Q \mid \varphi(i\tau, x, u_\alpha) \in B_i \text{ for } i = 0, \dots, n-1 \}.$

These sets again form an open cover of Q,

$$\mathfrak{B}^{(n)} = \{B_n(\alpha) \mid \alpha \in \mathcal{B}^n\}.$$

The invariance entropy of C is

$$h(\mathcal{C}, Q) := \lim_{n \to \infty} \frac{1}{n} \log N(\mathfrak{B}^{(n)})$$

and the **topological invariance entropy** of Q is

$$h_{inv}(Q) := \inf_{\mathcal{C}} h(\mathcal{C}, Q).$$

Fritz Colonius (Universität Augsburg)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Alternative definition

Let K be a subset of $Q \subset M$ sub that for all $x \in K$ there is $u \in U$ with $\varphi(n, x, u) \in Q$ for all $n \in \mathbb{N}$. A subset $S \subset U$ is called (τ, K, Q) -spanning, if for all $x \in K$ there is $u \in S$ such that for all $j = 1, \ldots, \tau$

$$\varphi(t, x, u) \in \operatorname{int} Q$$
 (or $\varphi(t, x, u) \in Q$).

Thus \mathcal{U} is (τ, K, Q) -spanning for all $\tau \in \mathbb{N}$. Let $r_{inv}(\tau, K, Q)$ be the minimal number of elements in a (τ, K, Q) -spanning set. The invariance entropy of (K, Q) is

$$h_{inv}(K, Q) := \lim_{\tau \to \infty} \log r_{inv}(\tau, K, Q).$$

Fritz Colonius (Universität Augsburg)

イロト 不得 トイヨト イヨト ヨー シック

Alternative definition

Let K be a subset of $Q \subset M$ sub that for all $x \in K$ there is $u \in U$ with $\varphi(n, x, u) \in Q$ for all $n \in \mathbb{N}$. A subset $S \subset U$ is called (τ, K, Q) -spanning, if for all $x \in K$ there is $u \in S$ such that for all $j = 1, \ldots, \tau$

$$\varphi(t, x, u) \in \operatorname{int} Q$$
 (or $\varphi(t, x, u) \in Q$).

Thus \mathcal{U} is (τ, K, Q) -spanning for all $\tau \in \mathbb{N}$. Let $r_{inv}(\tau, K, Q)$ be the minimal number of elements in a (τ, K, Q) -spanning set. The invariance entropy of (K, Q) is

$$h_{inv}(K, Q) := \lim_{\tau \to \infty} \log r_{inv}(\tau, K, Q).$$

Theorem (FC, Kawan, Nair (2013)). For K = Q one has

$$h_{inv}(Q) = h_{inv}(Q, Q).$$

Fritz Colonius (Universität Augsburg)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

The setup

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The control problem

Explanation

System Deterministic, discrete or continuous time **Coder** Encodes the state by a symbol from a (time-dependent) alphabet at discrete times $k\tau$, k = 0, 1, 2, ...**Controller** Generates open-loop controls on a finite time interval $[0, \tau]$

Relation to coder-controllers and data rates

A coder-controller has the form $\mathcal{H}=(\mathit{S},\gamma,\delta,\tau)$ where

- $S = (S_k)_{k \in \mathbb{N}}$ denotes finite coding alphabets

- the coder mapping $\gamma_k:M^{k+1}\to S_k$ associates to the present and past states the symbol $s_k\in S_k$

- at time $k\tau$ the controller mapping is $\delta_k : S_0 \times \cdots \times S_k \to \Omega^{\tau}$.

The transmission data rate is

$$R(\mathcal{H}) = \liminf_{k o \infty} rac{1}{k au} \sum_{j=0}^{k-1} \log \#S_j.$$

◆ロシ ◇掃 ▶ ◆ ヨ ▷ ◆ ヨ ▶ ○ ヨ ○ ◇ ◇ ◇

Relation to coder-controllers and data rates

A coder-controller has the form $\mathcal{H}=(\mathit{S},\gamma,\delta,\tau)$ where

- $S = (S_k)_{k \in \mathbb{N}}$ denotes finite coding alphabets

- the coder mapping $\gamma_k:M^{k+1}\to S_k$ associates to the present and past states the symbol $s_k\in S_k$

- at time $k\tau$ the controller mapping is $\delta_k : S_0 \times \cdots \times S_k \to \Omega^{\tau}$. The transmission data rate is

$$R(\mathcal{H}) = \liminf_{k \to \infty} \frac{1}{k\tau} \sum_{j=0}^{k-1} \log \#S_j.$$

 ${\mathcal H}$ renders Q invariant if for every $x_0 \in Q$ the sequence

$$x_{k+1} := \varphi(\tau, x_k, u_k), k \in \mathbb{N},$$

with

$$u_k = \delta_k(\gamma_0(x_0), \gamma_1(x_0, x_1), \dots, \gamma_k(x_0, x_1, \dots, x_k)) \in \Omega^{\tau}$$

satisfies

 $\varphi(i, x_k, u_k) \in Q$ for all $i \in \{1, \dots, \tau\}$ and all $k \in \mathbb{N}$.

Fritz Colonius (Universität Augsburg)

January 21, 2019 21 / 35

Theorem. For a compact and controlled invariant set Q it holds that

$$h_{inv}(Q) = \inf R(\mathcal{H}),$$

where the infimum is taken over all coder-controllers $\mathcal H$ that render Q invariant.

3

Sac

イロト イポト イヨト イヨト

Comments and some further results

- Let $K_1, K_2 \subset D$ be compact with $\operatorname{int} K_i \neq \emptyset$ in a control set D. Then $h_{inv}(K_1, Q) = h_{inv}(K_2, Q)$.

- For linear control systems in \mathbb{R}^d

$$x_{n+1} = Ax_n + Bu_n$$
, $u_n \in \Omega \subset \mathbb{R}^m$,

with $\operatorname{int} K \neq \emptyset$ and (A, B) controllable, A hyperbolic and Ω a compact nbhd of 0, one has for K contained in the unique control set D

$$h_{inv}(K, D) = \sum_{\lambda \in \sigma(A)} \max(0, \log |\lambda|).$$

イロト 不得 トイヨト イヨト ヨー のくや

Comments and some further results

- Let $K_1, K_2 \subset D$ be compact with $\operatorname{int} K_i \neq \emptyset$ in a control set D. Then $h_{inv}(K_1, Q) = h_{inv}(K_2, Q)$.

- For linear control systems in \mathbb{R}^d

$$x_{n+1} = Ax_n + Bu_n$$
, $u_n \in \Omega \subset \mathbb{R}^m$,

with $int K \neq \emptyset$ and (A, B) controllable, A hyperbolic and Ω a compact nbhd of 0, one has for K contained in the unique control set D

$$h_{inv}(K, D) = \sum_{\lambda \in \sigma(A)} \max(0, \log |\lambda|).$$

- hyperbolicity of the control flow on $\mathcal{U}\times Q$ gives a formula in terms of Lyapunov exponents for periodic solutions

Kawan (2014),

- also for linear control systems on Lie groups

da Silva (2014)

Fritz Colonius (Universität Augsburg)

DA SILVA AND KAWAN, DISC. CONT. DYNAM. SYST. (2016)

Theorem. Consider a uniformly hyperbolic chain control set E with nonempty interior of a control-affine continuous time system. Assume that (i) the Lie Algebra Rank Condition holds on intE and (ii) for each $u \in \mathcal{U}$ there exists a unique $x \in E$ with $(u, x) \in \mathcal{E}$, i.e., \mathcal{E} is a graph over \mathcal{U} .

Then E is the closure of a control set D and for every compact set $K \subset D$ with positive volume,

$$h_{inv}(K, D) = \inf_{(u,x) \in \mathcal{E}} \limsup_{t \to \infty} \log J^+ \varphi_{t,u}(x)$$

where $J^+ \varphi_{t,u}(x)$ is the unstable determinant of $d\varphi_{t,u}(x)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Invariance pressure

Introduce a potential $f \in C(\Omega, \mathbb{R})$ for the control values. Let $K \subset Q$ be compact s.t. $\forall x \in K \exists u \in \mathcal{U} : \varphi(\mathbb{R}_+, x, u) \subset Q$. A set $S \subset \mathcal{U}$ is a (τ, K, Q) -spanning set if

$$\forall x \in K \exists u \in S : \varphi([0, \tau], x, , u) \subset Q.$$

With $(S_{\tau}f)(u) := \int_0^{\tau} f(u(t)) dt$ let

$$a_{\tau}(f, K, Q) := \inf\{\sum_{u \in \mathcal{S}} e^{(S_{\tau}f)(u)}; \ \mathcal{S} \text{ is } (\tau, K, Q) \text{-spanning}\}.$$

The invariance pressure is

$$P_{inv}(f, K, Q) = \limsup_{\tau \to \infty} \frac{1}{\tau} \log a_{\tau}(f, K, Q).$$

If $f \equiv 0$, $\sum_{u \in S} e^{(S_{\tau}f)(u)} = \#S$. Then this reduces to a known characterization of the invariance entropy.

Fritz Colonius (Universität Augsburg)

Invariance Entropy

January 21, 2019 26 / 35

Consider a linear control systems in \mathbb{R}^d

$$\dot{x} = Ax + Bu$$
, $u(t) \in \Omega \subset \mathbb{R}^m$,

with a compact neighborhood Ω of 0 and assume (A,B) controllable, A hyperbolic.

For $K \subset D$, the unique control set with $intD \neq \emptyset$, one has:

$$P_{inv}(f, K, D) \leq \sum_{\lambda \in \sigma(A)} \max(0, \operatorname{Re} \lambda) + \inf_{T, u(\cdot)} \frac{1}{T} \int_0^T f(u(s)) ds,$$

where the infimum is taken over all T > 0 and all T-periodic controls $u(\cdot)$ with values in a compact subset of $int\Omega$ and a T-periodic $x(\cdot) \subset intD$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

For **dynamical systems** it is well known that the entropy is already determined on the recurrent set.

What about invariance entropy?

For **control systems** recurrence properties are replaced by controllability properties.

Here subsets of complete approximate controllability (in Q) are of relevance, called **control sets**.

200

イロト 不得 トイヨト イヨト 二日

W-control sets

For a **open** subset W of the state space let $\varphi_W(n, x, u)$ be the trajectories within W and define the **reachable and controllable set within W** by

$$\begin{aligned} \mathcal{R}_W(x) &= \{ \varphi_W(n, x, u) \text{ for some } n \in \mathbb{N} \text{ and } u \in \mathcal{U} \} \\ \mathcal{C}_W(x) &= \{ y \in W \, | \varphi_W(n, y, u) = x \text{ for some } n \in \mathbb{N} \text{ and } u \in \mathcal{U} \}. \end{aligned}$$

= nar

イロト イポト イヨト イヨト

W-control sets

For a **open** subset W of the state space let $\varphi_W(n, x, u)$ be the trajectories within W and define the **reachable and controllable set within W** by

$$\begin{aligned} \mathcal{R}_W(x) &= \{ \varphi_W(n, x, u) \text{ for some } n \in \mathbb{N} \text{ and } u \in \mathcal{U} \} \\ \mathcal{C}_W(x) &= \{ y \in W \, | \varphi_W(n, y, u) = x \text{ for some } n \in \mathbb{N} \text{ and } u \in \mathcal{U} \}. \end{aligned}$$

Definition. A set *D* is called an **invariant W-control set** if (i)

$$\overline{D}^W = \overline{\mathcal{R}_W(x)}^W$$
 for all $x \in D$,

where the closure is taken with respect to W and (ii) there is $x \in D$ with $x \in intC_W(x)$.

Remark. Condition (ii) is crucial for discrete-time systems.

イロト イポト イヨト イヨト 二日

Existence of invariant W-control sets

Theorem. Assume

- the state space M is a connected analytic Riemannian manifold
- $W \subset M$ is connected open and relatively compact
- the control range $\Omega \subset \overline{\mathrm{int}\Omega} \subset \mathbb{R}^m$ and $f: M imes \Omega o M$ is analytic

- $\Omega_{sub} := \{ \omega \in \Omega | f(\cdot, \omega) \text{ is submersive} \}$ is the complement of a proper analytic subset.

Then the following are equivalent:

(i) There are at least one and at most finitely many **invariant W-control** sets D and for every $x \in W$ there is D with

$$\mathcal{R}_W(x) \cap D \neq \emptyset.$$

(ii) There is a compact set $F \subset W$ with

$$F \cap \overline{\mathcal{R}_W(x)} \neq \emptyset$$
 for all $x \in W$.

Albertini and Sontag (1993), Wirth (1998), Patrão and San Martin (2007)

Fritz Colonius (Universität Augsburg)

Theorem. Under the assumptions of (i) in the previous theorem let $Q := \overline{W} \subset M$ and consider a compact $K \subset Q$. Assume

(i) for every relatively invariant *W*-control set C_i there is a compact $K_i \subset K \cap C_i$ with $intK_i \neq \emptyset$.

(i) for the finitely many invariant W-control sets D_i

$$f(\bigcup_i \overline{D_i}, \Omega) \cap (\partial Q \setminus \bigcup_i \overline{D_i}) = \emptyset.$$

Then

$$h_{inv}(K, Q) = \max_{i} h_{inv}(K_i, C_i).$$

where the maximum is taken over all relatively invariant W-control sets C_i . **Remark.** In the continuous-time case a similar result has been shown in

FC/Lettau (2016).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

$$f_{lpha}(x,\omega) = x + \sigma \cos(4\pi x) + A\omega + lpha \mod 1.$$

Two W-control sets D_1 and D_2 (to the right) in W = (0.1, 0.7). The invariance entropies on Q = [0.1, 0.7] and on $\overline{D_2}$ coincide.

Sar

Classical entropy of dynamical systems describes the **total information** generated by the system topologically or with respect to an **invariant measure**.

In contrast, entropy for control systems describes the **minimal information** for invariance in a topological context.

The data rate theorem relates the topological invariance entropy to the minimal bit rate needed for invariance.

In a similar vein, minimal bit rates for other control problems, e.g. stabilization or state estimation, can be determined.

There are also several efforts to develop a measure-theoretic notion of invariance entropy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

Some references

F. Colonius, J. Cossich, A. Santana, Invariance pressure of control sets, SIAM J. Control Optim. 56 (2018), pp. 4130-4147.

F. Colonius, Invariance entropy, quasi-stationary measures and control sets. Discrete and Continuous Dynamical Systems (DCDS-A) 38(4) (2018), 2093-2123.

F. Colonius, R. Lettau, Relative controllability properties, IMA Journal of Mathematical Control and Information 33 (2016), 701-722.

A. da Silva and C. Kawan, Invariance entropy of hyperbolic control sets, Discrete and Continuous Dynamical Systems (DCDS-A), 36 (2016), 97-136.

G. Nair, R.J. Evans, I. Mareels, and W. Moran, Topological feedback entropy and nonlinear stabilization, IEEE Transactions on Automatic Control 49 (2004), 1585-1597.

Xingfu Zhong and Yu Huang, Invariance Pressure Dimensions for Control Systems, Journal of Dynamics and Differential Equations (2018).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙